Skip to main content
Log in

Allylation of active methylene compounds with cyclic Baylis–Hillman alcohols: a DFT study

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

Allylation reaction of active methylene compounds with cyclic Baylis–Hillman (BH) alcohol catalyzed by 4-dimethyamino-pyridine (DMAP) has been investigated by means of density functional theory with B3LYP/6-311++G(d,p). The first step on the chemical path is considered as an acid–base reaction. It is then followed by allylation of active methylene compound with cyclic BH alcohol. Calculated gas-phase pKa values illustrate that active methylene compounds have higher acidity than the considered cyclic BH alcohol. The DMAP catalytic activity may be interpreted as a proton transfer bridge between the active methylene compounds and the cyclic BH alcohol. Two alternative competing reactivity sites are present. Regioselectivity has been carried out on the base of natural atomic charge, Fukui index. The computations help rationalizing the fact that the direct allylation is the favored reaction and leads to the end-product.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Scheme 2
Scheme 3
Scheme 4
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Basavaiah D, Veeraraghavaiah G (2012) The Baylis–Hillman reaction: a novel concept for creativity in chemistry. Chem Soc Rev 41:68

    Article  CAS  Google Scholar 

  2. Basavaiah D, Jaganmohan Rao A, Satyanarayana T (2003) Recent advances in the Baylis–Hillman reaction and applications. Chem Rev 103:811–892

    Article  CAS  Google Scholar 

  3. Ozawa F, Okamoto H, Kawagishi S, Yamamoto S, Minami T, Yoshifuji M (2002) (Pi-allyl) palladium complexes bearing diphosphinidenecyclobutene ligands (DPCB): highly active catalysts for direct conversion of allylic alcohols. J Am Chem Soc 124:10968–10969

    Article  CAS  Google Scholar 

  4. Manabe K, Kobayashi S (2003) Palladium-catalyzed, carboxylic acid-assisted allylic substitution of carbon nucleophiles with allyl alcohols as allylating agents in water. Org Lett 15:3241–3244

    Article  Google Scholar 

  5. Kayaki Y, Koda T, Ikariya T (2004) Halide-free dehydrative allylation using allylic alcohols promoted by a palladium-triphenyl phosphite catalyst. J Org Chem 69:2595–2597

    Article  CAS  Google Scholar 

  6. Patil NT, Yamamoto Y (2004) Direct allylic substitution of allyl alcohols by carbon pronucleophiles in the presence of a palladium/carboxylic acid catalyst under neat conditions. Tetrahedron Lett 45:3101–3103

    Article  CAS  Google Scholar 

  7. Bisaro F, Pretat G, Vitale M, Poli G (2002) Alkylation of active methylenes via benzhydryl cations. Synlett 2002:1823–1826

    Article  Google Scholar 

  8. Yasuda M, Somyo T, Baba A (2006) Direct carbon–carbon bond formation from alcohols and active methylenes, alkoxyketones, or indoles catalyzed by indium trichloride. Angew Chem Int Ed 45:793–796

    Article  CAS  Google Scholar 

  9. Jana U, Biswas S, Maiti S (2007) A simple and efficient FeCl3-catalyzed direct alkylation of active methylene compounds with benzylic and allylic alcohols under mild conditions. Tetrahedron Lett 48:4065–4069

    Article  CAS  Google Scholar 

  10. Sanz R, Martínez A, Miguel D, Álvarez-Gutiérrez JM, Rodriguez F (2006) Brønsted acid-catalyzed nucleophilic substitution of alcohols. Adv Synth Catal 348:1841–1854

    Article  CAS  Google Scholar 

  11. Rao W, Tay AHL, Goh PJ, Choy JML, Ke JK, Chan PWH (2008) Iodine-catalyzed allylation of 1,3-dicarbonyl compounds with allylic alcohols at room temperature. Tetrahedron Lett 49:5112–5115

    Google Scholar 

  12. Motokura K, Fujita N, Mori K, Mizugaki T, Ebitani K, Kaneda K (2006) Environmentally benign additions of various 1,3-dicarbonyl compounds to alkenes and alcohols in the presence of solid acid catalysts have been described. Angew Chem Int Ed 45:2605–2609

    Article  CAS  Google Scholar 

  13. Noji M, Konno Y, Ishii K (2007) Metal triflate-catalyzed cationic benzylation and allylation of 1,3-dicarbonyl compounds. J Org Chem 72:5161–5167

    Article  CAS  Google Scholar 

  14. Shen M-G, Cai C, Yi WB (2009) Yb [N(SO2C8F17)2]3-catalyzed allylation of 1,3-dicarbonyl compounds with allylic alcohols in a fluorous biphase system. J Fluorine Chem 130:595–599

  15. Mhasni O, Rezgui F (2010) The first DMAP-mediated palladium-free Tsuji–Trost-type reaction of cyclic and acyclic Baylis–Hillman alcohols with active methylene compounds. Tetrahedron Lett 51:586–587

    Article  CAS  Google Scholar 

  16. Salehi P, Iranpoor N, Kargar F (1998) Behbahani, selective and efficient alcoholyses of allylic, secondary- and tertiary benzylic alcohols in the presence of iron (III). Tetrahedron 54:943–948

    Article  CAS  Google Scholar 

  17. Yadav JS, SubbaReddy BV, Pandurangum T, RaghavendraRao KV, Praneeth K, NarayanaKumar GGKS, Madavi C, Kunwar AC (2008) Heteropoly acid-catalyzed highly efficient alkylation of 1,3-dicarbonyl compounds with benzylic and propargylic alcohols. Tetrahedron Lett 49:4296–4301

    Article  CAS  Google Scholar 

  18. Sanderson J, Bayse CA (2008) The Lewis acidity of bismuth(III) halides: a DFT analysis. Tetrahedron Lett 64:7685–7689

    Article  CAS  Google Scholar 

  19. Rueping M, Nachtsheim BJ, Kuenkel A (2007) Efficient metal-catalyzed direct benzylation and allylic alkylation of 2,4-pentanediones. Org Lett 9:825–828

    Article  CAS  Google Scholar 

  20. Pearson RG (1963) Hard and soft acids and bases. J Am Chem Soc 85:3533–3539

    Article  CAS  Google Scholar 

  21. Pearson RG (1966) Acids and bases. Science 151:172–177

    Article  CAS  Google Scholar 

  22. Parr RG, Pearson RG (1983) Absolute hardness: companion parameter to absolute electronegativity. J Am Chem Soc 105:7512–7516

    Article  CAS  Google Scholar 

  23. Pearson RG (1997) Chemical hardness: applications from molecules to solids. Wiley-VCH, Oxford

    Book  Google Scholar 

  24. Pearson RG (1990) Hard and soft acids and bases—the evolution of a chemical concept. Coord Chem Rev 100:403–425

    Article  CAS  Google Scholar 

  25. Parr RG, Szentpaly LV, Liu S (1999) Electrophilicity index. J Am Chem Soc 21:1922–1924

    Article  Google Scholar 

  26. Lee C, Yang W, Parr RG (1988) Local softness and chemical reactivity in molecules CO, SCN and H2CO. J Mol Struct (Theochem) 163:305–313

    Article  Google Scholar 

  27. Marakchi K, Kabbaj OK, Komiha N, Chraibi ML (2001) Etude théorique des réactions de cycloaddition dipolaire-1,3 de la diphénylnitrilimine sur des dipolarophiles hautement fluorés. J Fluorine Chem 109:163–171

    Article  CAS  Google Scholar 

  28. Ramos-Morales FR, Durand-Niconoff S, Correa-Basurto J, Meléndez Bustamante FJ, Cruz-Sánchez JS (2008) Theoretical study of reactivity based on the hard–soft/acid–base (HSAB) in isatoic anhydride and some derivatives. J Mex Chem Soc 52:241–244

    CAS  Google Scholar 

  29. Flores-Holguín N, Aguilar-Elguézabal A, Rodríguez-Valdez LM, Glossman Mitnik D (2008) Theoretical study of chemical reactivity of main species in alpha-pinene isomerization reaction. J Mol Struct (Theochem) 854:81–88

    Article  Google Scholar 

  30. Benchouk W, Mekelleche SM (2008) Theoretical study of the mechanism and regioselectivity of the 1, 3-dipolar cycloaddition of diazomethane with methyl acrylate using theoretical approaches. J Mol Struct (Theochem) 862:1–6

    Article  CAS  Google Scholar 

  31. Benson MT, Moser ML, Peterman DR, Dinescu A (2008) Determination of pKa for dithiophosphinic acids using density functional theory. J Mol Struct (Theochem) 867:71–77

    Article  CAS  Google Scholar 

  32. Mineva T, Russo N (2010) Atomic Fukui indices and orbital hardnesses of adenine, thymine, uracil, guanine and cytosine from density functional computations. J Mol Struct (Theochem) 943:71–76

    Article  CAS  Google Scholar 

  33. Chamorro E, Duque-Noreña M, Pérez P (2009) A comparison between theoretical and experimental models of electrophilicity and nucleophilicity. J Mol Struct (Theochem) 896:73–79

    Article  CAS  Google Scholar 

  34. De Vleeschouwer F, De Proft F, Geerlings P (2010) Conceptual density functional theory based intrinsic radical stabilities: application to substituted silylenes and p-benzynes. J Mol Struct (Theochem) 943:94–102

    Article  Google Scholar 

  35. Nazari F, Zali FR (2007) Density functional study of the relative reactivity of the carbonyl group in substituted cyclohexanone. J Mol Struct (Theochem) 817:11–18

    Article  CAS  Google Scholar 

  36. Politzer P, Murray JS, Macaveiu L (2010) The principle of maximum hardness and structural effects of nonbonded interactions in chloronitromethanes. J Mol Struct (Theochem) 943:53–58

  37. Pérez P, Chamorro E (2010) Global and local reactivity of N-heterocyclic carbenes with boron and phosphorus atoms: an analysis based on spin polarized density functional framework. J Mol Struct (Theochem) 943:110–114

    Article  Google Scholar 

  38. Fuentealba P, David J, Guerra D (2010) Density functional based reactivity parameters: thermodynamic or kinetic concepts? J Mol Struct (Theochem) 943:127–137

    Article  CAS  Google Scholar 

  39. Martínez J (2009) Chemical, local reactivity descriptors from degenerate frontier molecular orbitals. Phys Lett 478:310–322

    Article  Google Scholar 

  40. Labet V, Morell C, Douki T, Cadet J, Eriksson LA, Grand A (2010) Hydrolytic deamination of 5, 6-dihydrocytosine in a protic medium: a theoretical study. J Phys Chem A 114:1826–1834

    Article  CAS  Google Scholar 

  41. Correa J, Herrera B, Toro-Labbé A (2007) Characterization of the reactive conformations of protonated histamine through the reaction force analysis and the dual descriptor of chemical reactivity. J Mol Struct (Theochem) 817:111–118

    Article  CAS  Google Scholar 

  42. Moncada JL, Toro-Labbé A (2006) A theoretical study of conducting oligomeric systems: the conceptual DFT perspective. Chem Phys Lett 429:161–165

    Article  CAS  Google Scholar 

  43. Hocquet A, Toro-Labbé A, Chermette H (2004) Intramolecular Interactions along the reaction path of keto-enol tautomerism: fukui functions as local softnesses and charges as local hardnesses. J Mol Struct (Theochem) 686:213–218

    Article  CAS  Google Scholar 

  44. Padmanabhan J, Parthasarathi R, Elango M, Subramanian V, Krishnamoorthy BS, Gutierrez-Oliva S, Toro-Labbé A, Roy DR, Chattaraj PK (2007) Multiphilic descriptor for chemical reactivity and selectivity. J Phys Chem A 111:9130–9138

    Article  CAS  Google Scholar 

  45. Roy DR, Parthasarathi R, Maiti B, Subramanian V, Chattaraj PK (2005) Electrophilicity as a possible descriptor for toxicity prediction. Bioorganic Med Chem 13:3405–3412

    Article  CAS  Google Scholar 

  46. Becke AD (1993) Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  47. Lee C, Yang W, Parr RG (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37:785–789

    Article  CAS  Google Scholar 

  48. McLean AD, Chandler GS (1980) Contracted Gaussian basis sets for molecular calculations. I. Second row atoms, Z = 11–18. J Chem Phys 72:5639–5648

    Article  CAS  Google Scholar 

  49. Krishnan R, Binkley JS, Seeger R, Pople JA (1980) Self-consistent molecular orbital methods. XX. A basis set for correlated wavefunctions. J Chem Phys 72:650–654

    Article  CAS  Google Scholar 

  50. Frisch MJ, Pople JA, Binkley JS (1984) Self-consistent molecular orbital methods 25: supplementary functions for gaussian basis sets. J Chem Phys 80:3265–3269

    Article  CAS  Google Scholar 

  51. Gaussian 09, Revision A.02, Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian, Inc., Wallingford CT

  52. Charif IE, Mekelleche SM, Villemin D, Mora-Diez N (2007) Correlation of aqueous pK a values of carbon acids with theoretical descriptors: a DFT study. J Mol Struct (Theochem) 818:1–6

    Article  CAS  Google Scholar 

  53. Chermette H (1999) Chemical reactivity indexes in density functional theory. J Comp Chem 20:129–154

    Article  CAS  Google Scholar 

  54. Geerlings P, De Proft F, Langenaeker W (2003) Conceptual density functional theory. Chem Rev 103:1793–1873

    Article  CAS  Google Scholar 

  55. Chermette H (1998) Density functional theory a powerful tool for theoretical studies in coordination chemistry. Coord Chem Rev 178–180:699–721

    Article  Google Scholar 

  56. Ciofini I, Adamo C, Chermette H (2005) Self-interaction error in density functional theory: a mean-field correction for molecules and large systems. Chem Phys 309:67–76

    Article  CAS  Google Scholar 

  57. Chermette H, Boulet P, Portmann S (2002) In: Sen KD (ed) Fukui functions and local softness, reviews in modern quantum chemistry: a celebration of the contributions of Robert G. Parr, 2002; recent advances in density functional methods, part V. World Scientific, Singapore, pp 992–1012

  58. Yang W, Mortier WJ (1986) The use of global and local molecular parameters for the analysis of the gas-phase basicity of amines. J Am Chem Soc 108:5708–5711

    Article  CAS  Google Scholar 

  59. Reed AE, Curtiss LA, Weinhold F (1988) Intermolecular interactions from a natural bond orbital, donor–acceptor viewpoint. Chem Rev 88:899–926

    Article  CAS  Google Scholar 

  60. Klopman G (1986) Chemical reactivity and the concept of charge- and frontier-controlled reactions. J Am Chem Soc 90:223–234

    Article  Google Scholar 

  61. Chattaraj PK (2001) Chemical reactivity and selectivity: local HSAB principle versus frontier orbital theory. J Phys Chem A 105:511–513

    Article  CAS  Google Scholar 

  62. Domingo LR, Aurell MJ, Perez P, Contreras R (2002) Quantitative characterization of the global electrophilicity power of common diene/dienophile pairs in Diels-Alder reactions. Tetrahedron 58:4417–4423

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Franck deProft is acknowledged for helpful discussions. HC acknowledges the GENCI/CINES for HPC resources/computer time (Project cpt2130).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Salima Boughdiri.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Harrath, K., Essalah, K., Morell, C. et al. Allylation of active methylene compounds with cyclic Baylis–Hillman alcohols: a DFT study. Theor Chem Acc 134, 98 (2015). https://doi.org/10.1007/s00214-015-1694-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-015-1694-7

Keywords

Navigation