Skip to main content
Log in

Effect of van der Waals interactions in the DFT description of self-assembled monolayers of thiols on gold

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

The structure and energetic properties of self-assembled monolayers (SAMs) of alkanethiol derivatives (simple alkanethiols, mercaptoalkanoic acids and aminoalkanethiols with different chain length) adsorbed on the metallic Au(111) surface are investigated through periodic DFT calculations. To sort out the effect of van der Waals (vdW) interactions on the DFT calculations, the results of the standard GGA–PBE functional are compared with those obtained with approaches including the vdW interactions such as those incorporating the Grimme’s (GGA–PBE-D2) and the Tkatchenko–Scheffler’s (GGA–PBE-TS) schemes, as well as with the optB86b-vdW density functional. The most significant difference between the two sets of results appears for the adsorption energies per thiol molecules: The standard functional predicts energy values 30–40 % lower than those obtained when the van der Waals interactions are taken into account. This is certainly due to a better description of the lateral interactions between the chains of the thiols when including the van der Waals effects. Differences are also found between the adsorption energies predicted by density functionals taking into account the vdW corrections, with values increasing in the order GGA–PBE-D2 < GGA–PBE-TS < optB86b-vdW. Furthermore, the functionals considering dispersion interactions favor much more tilted orientations of the SAMs over the surface with respect to those found using the standard GGA functional (the SAMs’ tilt angles increase from 17°–24° to 37°–46°), being the former in closer agreement with available experimental data. In contrast, the SAMs’ precession angle and monolayer thickness are less affected by the type of DFT exchange–correlation functional employed. In the case of low surface coverage, the chains of the thiols adopt more tilted configurations and tend to lay side-down onto the surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Domínguez CSH, Quintana C, Vicente J, Hernández P, Hernández L (2008) Talanta 74:1014–1019

    Article  Google Scholar 

  2. Dong X-D, Lu J, Cha C (1995) Bioelectrochem Bioenerg 36:73–76

    Article  CAS  Google Scholar 

  3. Guo C, Boullanger P, Jiang L, Liu T (2008) Colloid Surf B 62:146–150

    Article  CAS  Google Scholar 

  4. Kondo M, Nakamura Y, Fujii K, Nagata M, Suemori Y, Dewa T, Iida K, Gardiner AT, Cogdell RJ, Nango M (2007) Biomacromolecules 8:2457–2463

    Article  CAS  Google Scholar 

  5. Crivillers N, Mas-Torrent M, Vidal-Gancedo J, Veciana J, Rovira C (2008) J Am Chem Soc 130:5499–5506

    Article  CAS  Google Scholar 

  6. Pattanaik G, Shao W, Swami N, Zangari G (2009) Langmuir 25:5031–5038

    Article  CAS  Google Scholar 

  7. Li F, Tang L, Zhou W, Guo Q (2009) J Phys Chem C 113:17899–17903

    Article  CAS  Google Scholar 

  8. Palyvoda O, Bordenyuk AN, Yatawara AK, McCullen E, Chen C-C, Benderskii AV, Auner GW (2008) Langmuir 24:4097–4106

    Article  CAS  Google Scholar 

  9. Jacobsen V, Zhu T, Knoll W, Kreiter M (2005) Eur J Inorg Chem 2005:3683–3690

    Article  Google Scholar 

  10. Campiña JM, Martins A, Silva F (2009) Electrochem Acta 55:90–103

    Article  Google Scholar 

  11. Lim I-IS, Ip W, Crew E, Njoki PN, Mott D, Zhong C-J, Pan Y, Zhou S (2007) Langmuir 23:826–833

    Article  CAS  Google Scholar 

  12. Taylor AD, Ladd J, Etheridge S, Deeds J, Hall S, Jiang S (2008) Sens Actuator B 130:120–128

    Article  CAS  Google Scholar 

  13. Waring C, Bagot PAJ, Räisänen MT, Costen ML, McKendrick KG (2009) J Phys Chem A 113:4320–4329

    Article  CAS  Google Scholar 

  14. Dubois C, Stellacci F (2008) J Phys Chem C 112:7431–7435

    Article  CAS  Google Scholar 

  15. Dubois LH, Zegarski BR, Nuzzo RG (1993) J Chem Phys 98:678–688

    Article  CAS  Google Scholar 

  16. Laiho T, Leiro JA (2008) Surf Interface Anal 40:51–59

    Article  CAS  Google Scholar 

  17. Müller-Meskamp L, Karthäuser S, Waser R, Homberger M, Simon U (2008) Langmuir 24:4577–4580

    Article  Google Scholar 

  18. Oh SY, Chung CM, Kim DH, Lee SG (2008) Colloid Surf A 313–314:600–603

    Article  Google Scholar 

  19. Okabayashi N, Konda Y, Komeda T (2008) Phys Rev Lett 100:217801

    Article  Google Scholar 

  20. Béthencourt MI, Srisombat L-O, Chinwangso P, Lee TR (2009) Langmuir 25:1265–1271

    Article  Google Scholar 

  21. Sharma M, Komiyama M, Engstrom JR (2008) Langmuir 24:9937–9940

    Article  CAS  Google Scholar 

  22. Silien C, Buck M, Goretzki G, Lahaye D, Champness NR, Weidner T, Zharnikov M (2009) Langmuir 25:959–967

    Article  CAS  Google Scholar 

  23. Staub R, Toerker M, Fritz T, Schmitz-Hübsch T, Sellam F, Leo K (2000) Surf Sci 445:368–379

    Article  CAS  Google Scholar 

  24. Ge Y, Weidner T, Ahn H, Whitten JE, Zharnikov M (2009) J Phys Chem C 113:4575–4583

    Article  CAS  Google Scholar 

  25. Subramanian S, Sampath S (2007) Anal Bioanal Chem 388:135–145

    Article  CAS  Google Scholar 

  26. Lamb BM, Barrett DG, Westcott NP, Yousaf MN (2008) Langmuir 24:8885–8889

    Article  CAS  Google Scholar 

  27. Pace G, Petitjean A, Lalloz-Vogel M-N, Harrowfield J, Lehn J-M, Samorì P (2008) Angew Chem Int Ed 47:2484–2488

    Article  CAS  Google Scholar 

  28. Phong PH, Tomono H, Nishi N, Yamamoto M, Kakiuchi T (2008) Electrochim Acta 53:4900–4906

    Article  CAS  Google Scholar 

  29. Hayashi T, Wakamatsu K, Ito E, Hara M (2009) J Phys Chem C 113:18795–18799

    Article  CAS  Google Scholar 

  30. Srisombat L-O, Zhang S, Lee TR (2010) Langmuir 26:41–46

    Article  CAS  Google Scholar 

  31. Nadler R, Sánchez-de-Armas R, Sanz JF (2011) Comput Theoretical Chem 975:116–121

    Article  CAS  Google Scholar 

  32. Hattori S, Kano S, Azuma Y, Majima Y (2010) J Phys Chem C 114:8120–8125

    Article  CAS  Google Scholar 

  33. Cossaro A, Mazzarello R, Rousseau R, Casalis L, Verdini A, Kohlmeyer A, Floreano L, Scandolo S, Morgante A, Klein ML, Scoles G (2008) Science 321:943–946

    Article  CAS  Google Scholar 

  34. Tielens F, Santos E (2010) J Phys Chem C 114:9444–9452

    Article  CAS  Google Scholar 

  35. Kankate L, Turchanin A, Gölzhäuser A (2009) Langmuir 25:10435–10438

    Article  CAS  Google Scholar 

  36. Sellers H, Ulman A, Shnidman Y, Eilers JE (1993) J Am Chem Soc 115:9389–9401

    Article  CAS  Google Scholar 

  37. Cortés E, Rubert AA, Benitez G, Carro P, Vela ME, Salvarezza RC (2009) Langmuir 25:5661–5666

    Article  Google Scholar 

  38. Desikan R, Armel S, Meyer HM III, Thundat T (2007) Nanotechnology 18:424028

    Article  Google Scholar 

  39. Torres E, Blumenau AT, Biedermann PU (2011) Chem Phys Chem 12:999–1009

    CAS  Google Scholar 

  40. Fenter P, Eberhardt A, Liang KS, Eisenberger P (1997) J Chem Phys 106:1600–1608

    Article  CAS  Google Scholar 

  41. Fenter P, Eisenberger P, Liang KS (1993) Phys Rev Lett 70:2447–2450

    Article  CAS  Google Scholar 

  42. Li T-W, Chao I, Tao Y-T (1998) J Phys Chem B 102:2935–2946

    Article  CAS  Google Scholar 

  43. Sung I-H, Kim D-E (2004) Tribol Lett 17:835–844

    Article  CAS  Google Scholar 

  44. Tsai M-Y, Lin J-C (2001) J Colloid Interface Sci 238:259–266

    Article  CAS  Google Scholar 

  45. Woodward JT, Walker ML, Meuse CW, Vanderah DJ, Poirier GE, Plant AL (2000) Langmuir 16:5347–5353

    Article  Google Scholar 

  46. Noh J, Hara M (2011) RIKEN Rev: focused on nanotechnology in RIKEN II 38:49–51

    Google Scholar 

  47. Terrill RH, Tanzer TA, Bohn PW (1998) Langmuir 14:845–854

    Article  CAS  Google Scholar 

  48. Kautz NA, Kandel SA (2009) J Phys Chem C 113:19286–19291

    Article  CAS  Google Scholar 

  49. Kautz NA, Kandel SA (2008) J Am Chem Soc 130:6908–6909

    Article  CAS  Google Scholar 

  50. Torres E, Biedermann PU, Blumenau AT (2009) Int J Quantum Chem 109:3466–3472

    Article  CAS  Google Scholar 

  51. Wang J-G, Selloni A (2009) J Phys Chem C 113:8895–8900

    Article  CAS  Google Scholar 

  52. Maksymovych P, Sorescu DC, Yates JT (2006) Phys Rev Lett 97:146103 (1–4)

    Article  Google Scholar 

  53. Rosu DM, Jones JC, Hsu JWP, Kavanagh KL, Tsankov D, Schade U, Esser N, Hinrichs K (2009) Langmuir 25:919–923

    Article  CAS  Google Scholar 

  54. Mendoza SM, Arfaoui I, Zanarini S, Paolucci F, Rudolf P (2007) Langmuir 23:582–588

    Article  CAS  Google Scholar 

  55. Chuang W-H, Lin J-C (2007) J Biomed Mater Res A 82:820–830

    Article  Google Scholar 

  56. Iqbal P, Critchley K, Attwood D, Tunnicliffe D, Evans SD, Preece JA (2008) Langmuir 24:13969–13976

    Article  CAS  Google Scholar 

  57. Lee S-H, Lin W-C, Kuo C-H, Karakachian M, Lin Y-C, Yu B-Y, Shyue J-J (2010) J Phys Chem C 114:10512–10519

    Article  CAS  Google Scholar 

  58. Fadda AA, Abdel-Latif E, El-Mekawy RE (2009) Eur J Med Chem 44:1250–1256

    Article  CAS  Google Scholar 

  59. Ge Y, Whitten JE (2008) J Phys Chem C 112:1174–1182

    Article  CAS  Google Scholar 

  60. Sändig N, Biscarini F, Zerbetto F (2008) J Phys Chem C 112:19516–19520

    Article  Google Scholar 

  61. Harpham MR, Süzer O, Ma C-Q, Bäuerle P, Goodson T III (2009) J Am Chem Soc 131:973–979

    Article  CAS  Google Scholar 

  62. Tang ML, Mannsfeld SCB, Sun Y-S, Becerril HA, Bao Z (2009) J Am Chem Soc 131:882–883

    Article  CAS  Google Scholar 

  63. Nogues C, Lang P, Desbat B, Buffeteau T, Leiserowitz L (2008) Langmuir 24:8458–8464

    Article  CAS  Google Scholar 

  64. Duffy DM, Harding JH (2005) Langmuir 21:3850–3857

    Article  CAS  Google Scholar 

  65. Alkis S, Jiang P, Wang L-L, Roitberg AE, Cheng H-P, Krause JL (2007) J Phys Chem C 111:14743–14752

    Article  CAS  Google Scholar 

  66. Bhatia R, Garrison BJ (1997) Langmuir 13:765–769

    Article  CAS  Google Scholar 

  67. Bhatia R, Garrison BJ (1997) Langmuir 13:4038–4043

    Article  CAS  Google Scholar 

  68. Dirama TE, Johnson JA (2007) Langmuir 23:12208–12216

    Article  CAS  Google Scholar 

  69. Ghorai PK, Glotzer SC (2007) J Phys Chem C 111:15857–15862

    Article  CAS  Google Scholar 

  70. Mar W, Klein ML (1994) Langmuir 10:188–196

    Article  CAS  Google Scholar 

  71. Jia J, Huang YD, Long J, He JM, Zhang HX (2009) App Surf Sci 255:6451–6459

    Article  CAS  Google Scholar 

  72. Carro P, Creus AH, Muñoz A, Salvarezza RC (2010) Langmuir 26:9589–9595

    Article  CAS  Google Scholar 

  73. Lee H-H, Ružele Ž, Malysheva L, Onipko A, Gutés A, Björefors F, Valiokas R, Liedberg B (2009) Langmuir 25:13959–13971

    Article  CAS  Google Scholar 

  74. Grönbeck H, Häkkinen H, Whetten RL (2008) J Phys Chem C 112:15940–15942

    Article  Google Scholar 

  75. Grönbeck H (2010) J Phys Chem C 114:15973–15978

    Article  Google Scholar 

  76. Leng J-C, Lin L-L, Song X-N, Li Z-L, Wang C-K (2009) J Phys Chem C 113:18353–18357

    Article  CAS  Google Scholar 

  77. Majumder C (2008) Langmuir 24:10838–10842

    Article  CAS  Google Scholar 

  78. Fletcher MC, Vivoni A, Moore MM, Lui J, Caldwell J, Prokes SM, Glembocki O, Hosten CM (2008) Surf Sci 602:1614–1621

    Article  CAS  Google Scholar 

  79. Rajaraman G, Caneschi A, Gatteschi D, Totti F (2010) J Mater Chem 20:10747–10754

    Article  CAS  Google Scholar 

  80. Alexiadis O, Daoulas KC, Mavrantzas VG (2008) J Phys Chem B 112:1198–1211

    Article  CAS  Google Scholar 

  81. Szefczyk B, Franco R, Gomes JANF, Cordeiro MNDS (2010) J Mol Struct: Theochem 946:83–87

    Article  CAS  Google Scholar 

  82. Campiña JM, Martins A, Silva F (2007) J Phys Chem C 111:5351–5362

    Article  Google Scholar 

  83. Battaglini N, Repain V, Lang P, Horowitz G, Rousset S (2008) Langmuir 24:2042–2050

    Article  CAS  Google Scholar 

  84. Epple M, Bittner AM, Kuhnke K, Kern K, Zheng W-Q, Tadjeddine A (2002) Langmuir 18:773–784

    Article  CAS  Google Scholar 

  85. Kresse G, Hafner J (1993) Phys Rev B 47:558–561

    Article  CAS  Google Scholar 

  86. Kresse G, Furthmüller J (1996) Comput Mater Sci 6:15–50

    Article  CAS  Google Scholar 

  87. Kresse G, Furthmüller J (1996) Phys Rev B 54:11169–11186

    Article  CAS  Google Scholar 

  88. Perdew JP, Burke K, Ernzerhof M (1996) Phys Rev Lett 67:3865–3868

    Article  Google Scholar 

  89. Grimme S (2006) J Comput Chem 27:1787–1799

    Article  CAS  Google Scholar 

  90. Tkatchenko A, Scheffler M (2009) Phys Rev Lett 102:073005

    Article  Google Scholar 

  91. Klimeš J, Bowler DR, Michaelides A (2010) J Phys: Cond Matt 22:022201

    Google Scholar 

  92. Andersson MP (2013) J Theor Chem 2013:327839

    Article  Google Scholar 

  93. Prates Ramalho JP, Gomes JRB, Illas F (2013) RSC Adv 3:13085–13100

    Article  Google Scholar 

  94. Blöchl PE (1994) Phys Rev B 50:17953–17979

    Article  Google Scholar 

  95. Kresse G, Joubert D (1999) Phys Rev B 59:1758–1775

    Article  CAS  Google Scholar 

  96. Fajín JLC, Cordeiro MNDS, Gomes JRB (2011) Chem Comm 47:8403–8405

    Article  Google Scholar 

  97. Fajín JLC, Gomes JRB, Cordeiro MNDS (2013) Langmuir 29:8856–8864

    Article  Google Scholar 

  98. Fajín JLC, Cordeiro MNDS, Gomes JRB (2007) J Phys Chem C 111:17311–17321

    Article  Google Scholar 

  99. Rai B, Sathish P, Malhotra CP, Pradip, Ayappa KG (2004) Langmuir 20:3138–3144

    Article  CAS  Google Scholar 

  100. Fertitta E, Voloshina E, Paulus B (2014) J Comput Chem 35:204–213

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Thanks are due to Fundação para a Ciência e Tecnologia (FCT), Lisbon, Portugal, and to FEDER for financial support to REQUIMTE (projects Pest-C/EQB/LA0006/2013 and NORTE-07-0124-FEDER-000067-NANOCHEMISTRY) and to CICECO (project Pest-C/CTM/LA0011/2013) and for Programa Investigador FCT. This work is supported also by FCT through project PTDC/QUI–QUI/117439/2010 (FCOMP-01-0124-FEDER-020977) co-financed by Programa COMPETE. JLCF acknowledges FCT for the grant SFRH/BPD/64566/2009 co-financed by the Programa Operacional Potencial Humano (POPH)/Fundo Social Europeu (FSE); Quadro de Referência Estratégico Nacional 20092013 do Governo da República Portuguesa.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to José L. C. Fajín or M. Natália D. S. Cordeiro.

Additional information

Published as part of the special collection of articles derived from the 9th Congress on Electronic Structure: Principles and Applications (ESPA 2014).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fajín, J.L.C., Teixeira, F., Gomes, J.R.B. et al. Effect of van der Waals interactions in the DFT description of self-assembled monolayers of thiols on gold. Theor Chem Acc 134, 67 (2015). https://doi.org/10.1007/s00214-015-1666-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-015-1666-y

Keywords

Navigation