Skip to main content
Log in

Flavonols on graphene: a DFT insight

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

Density functional theory (DFT) has been used to study the adsorption of flavonols on the graphene surface, focusing our interest on flavonol features. For this purpose, four flavonols were chosen in order to infer the effects of hydroxyl groups in different positions with regard to their molecular behavior on the graphene surface. In addition, different DFT approximations (GGA, LDA and empirical dispersion-corrected functional) were selected. Changes in the flavonol geometries rising from the interactions with the graphene surface, interaction mechanism, biding energies and electronic structure were analyzed. A topological analysis of the electronic density as well as the examination of the reduced density gradient surfaces was applied to assess the nature and the strength of the interactions between the graphene surface and flavonols. To our knowledge, there is not literature devoted to the study of the adsorption of flavonol molecules on the graphene surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Wassei JK, Kaner RB (2013) Acc Chem Res 46:224

    Article  Google Scholar 

  2. Hu X, Zhou Q (2013) Chem Rev 113:3815

    Article  CAS  Google Scholar 

  3. Mao HY, Laurent S, Chen W, Akhavan O, Imani M, Ashkarran AA, Mahmoudi M (2013) Chem Rev 113:3407

    Article  CAS  Google Scholar 

  4. Bianco A (2013) Angew Chem Int Ed 52:4986

    Article  CAS  Google Scholar 

  5. Novoselov KS, Geim AK, Morozov SW, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Science 303:666

    Article  Google Scholar 

  6. Palermo V (2013) Chem Commun 2013(49):2848

    Article  Google Scholar 

  7. Lu YH, Chen W, Feng YP, He PM (2009) J Phys Chem B 113:2

    Article  CAS  Google Scholar 

  8. Georgakilas V, Otyepka M, Bourlinos AB, Chandra V, Kim N, Kemp KC, Hobza P, Zboril R, Kim KS (2012) Chem Rev 112:6156

    Article  CAS  Google Scholar 

  9. Björk J, Hanke F, Palma CA, Samori P, Cecchini M, Persson M (2010) J Chem Phys Lett 1:3407

    Article  Google Scholar 

  10. Gowtham S, Scheicher RH, Ahuja R, Pandey R, Karna SP (2007) Phys Rev B 76:033401

    Article  Google Scholar 

  11. Wehling TO, Novoselov KS, Morozov SV, Vdovin EE, Katsnelson MI, Geim AK, Lichtenstein IL (2008) Nano Lett 8:173

    Article  CAS  Google Scholar 

  12. Saha SK, Chandrakanth RC, Krishnamurthy HR, Waghmare UV (2009) Phys Rev B 80:15541

    Google Scholar 

  13. Tsetseris L, Pantelides ST (2012) Phys Rev B 85:15544

    Article  Google Scholar 

  14. Samuels AJ, Carey JD (2013) ACS Nano 7:279

    Article  Google Scholar 

  15. Li JW, Liu YY, Xie LH, Shang JZ, Qian Y, Yi MD, Huang W (2015) Phys Chem Chem Phys 17:491

    Google Scholar 

  16. Denis PA (2013) J Phys Chem C117:389

    Google Scholar 

  17. Oliveira ISS, Miwa RH (2015) J Chem Phys 142:04430

    Google Scholar 

  18. Hu T, Gerber IC (2013) J Phys Chem C 117:241

    Google Scholar 

  19. Vincent MA, Hillier IH (2014) J Chem Inf Model 54:225

    Article  Google Scholar 

  20. Sun JT, Lu YH, Chen W, Feng YP, Wee ATS (2010) Phys Rev B 81:155403

    Article  Google Scholar 

  21. Wuest JD, Rochefort A (2010) Chem Commun 46:2923

    Article  CAS  Google Scholar 

  22. Mollenhauer D, Brieger C, Voloshina E, Paulus B (2015) J Phys Chem C 119:1898

    Article  CAS  Google Scholar 

  23. Denis PA, Iribarne F (2010) J Mol Struct THEOCHEM 957:114

    Article  CAS  Google Scholar 

  24. Zhou Q, Yuan L, Yang X, Fu Z, Tang Y, Wang C, Zhang H (2014) Chem Phys 440:80

    Article  CAS  Google Scholar 

  25. Chakarova SD, Schröeder E, Lundqvist BI, Langreth DC (2006) Phys Rev Lett 96:146107

    Article  Google Scholar 

  26. Leenaerts O, Partoens B, Peeters RM (2009) Microelectron J 40:860

    Article  CAS  Google Scholar 

  27. Hamada I (2012) Phys Rev B 86:195436

    Article  Google Scholar 

  28. Galicia-Hernández M, Chigo-Anota E, Romero-de la Cruz MT, González-Melchor M, Hernández-Cocoletzi G (2012) J Mol Model 18:3857

    Article  Google Scholar 

  29. Lazar P, Karlicky F, Jurecka P, Kocman M, Otyepkova E, Safarova K (2013) J Am Chem Soc 135:6372

    Article  CAS  Google Scholar 

  30. Lechner C, Sax AF (2014) J Phys Chem C 118:20970

    Article  CAS  Google Scholar 

  31. Xu L, Zhou X, Tian WQ, Gao T, Zhang YF, Lei S, Liu ZF (2014) Angew Chem 126:1

    Article  Google Scholar 

  32. Herrera C, Alcalde R, Atilhan M, Aparicio S (2014) J Phys Chem C 118:9741

    Article  CAS  Google Scholar 

  33. Wang Y, Xu Z, Moe YN (2012) Chem Phys 406:78

    Article  CAS  Google Scholar 

  34. Zhao Y, Hu Z (2013) J Phys Chem B 117:10540

    Article  CAS  Google Scholar 

  35. Vijayakumar M, Schwenzer B, Shutthanandan V, Hu J, Liu J, Aksay IA (2014) Nano Energy 3:152

    Article  CAS  Google Scholar 

  36. Ramos-Berdullas N, Perez-Juste I, Van Alsenoy C, Mandado M (2015) Phys Chem Chem Phys 17:575

    Article  CAS  Google Scholar 

  37. Pensado AS, Malberg F, Gomes MFC, Padua AAH, Fernandez J, Kirchner B (2014) RSC Adv 4:18017

    Article  CAS  Google Scholar 

  38. Ghatee MH, Moosavi F (2011) J Phys Chem C 115:5626

    Article  CAS  Google Scholar 

  39. Tavakol H, Mollaei-Renani A (2014) Struct Chem 24:1659

    Article  Google Scholar 

  40. Singh M, Kaur M, Silakari O (1998) Eur J Med Chem 84:206

    Article  Google Scholar 

  41. Visioli F, Bellomo G, Galli C (1998) Biochem Biophys Res Commun 247:60

    Article  CAS  Google Scholar 

  42. Leopoldini I, Prieto-Pitarch I, Russo N, Toscano M (2004) J Phys Chem A 108:92

    Article  CAS  Google Scholar 

  43. Yoshida K, Mori M, Kondo T (2009) Nat Prod Rep 26:857

    Article  Google Scholar 

  44. Russo N, Toscano M, N. Ucella (2000) J Agric Food Chem 48:3232

  45. Aparicio S (2010) Int J Mol Sci 11:2017

    Article  CAS  Google Scholar 

  46. Anouar EH, Gierschner J, Duroux JL, Trouillas P (2013) Food Chem 131:79

    Article  Google Scholar 

  47. Machado NFL, Batista de Carvalho LAE, Otero JC, Marques MPM (2013) Spectrochim Acta Part A 109:116

    Article  CAS  Google Scholar 

  48. Zhang D, Liu Y, Chu L, Wei Y, Wang D, Cai S, Zhou F, Ji B (2013) J Phys Chem A 117:1784

    Article  CAS  Google Scholar 

  49. Cohen AJ, Mori-Sánchez P, Yang W (2012) Chem Rev 112:289

    Article  CAS  Google Scholar 

  50. Perdew JP, Burke K, Ernzerhof M (1996) Phys Rev Lett 77:3865

    Article  CAS  Google Scholar 

  51. Xu X, Goddard WA (2004) J Chem Phys 121:40684

    Google Scholar 

  52. Hummer K, Pusching P, Ambrosch-Draxl C (2003) Phys Rev B 67:184105

    Article  Google Scholar 

  53. Freitas RRQ, Rivelino R, de Brito Mota F, de Castillo CMC (2011) J Phys Chem C 115:12348

    Article  CAS  Google Scholar 

  54. Bahers TL, Rérat M, Sautet P (2014) J Phys Chem C 118:5997

    Article  CAS  Google Scholar 

  55. Shayeganfar F, Rochefort A (2014) Langmuir 30:9707

    Article  CAS  Google Scholar 

  56. Henwood D, Carey JD (2007) Phys Rev B 75:245413

    Article  Google Scholar 

  57. Grimme S (2006) J Comput Chem 27:1787

    Article  CAS  Google Scholar 

  58. Perdew JP, Wang Y (1992) Phys Rev B 45:13244

    Article  Google Scholar 

  59. Soler JM, Artacho E, Gale JD, García A, Junquera J, Ordejon P, Portal DS (2002) J Phys: Condens Matter 14:2745

    CAS  Google Scholar 

  60. Troullier N, Martins JL (1991) Phys Rev B 43:1993

    Article  CAS  Google Scholar 

  61. Monkhorst HJ, Pack JD (1976) Phys Rev B 13:5188

    Article  Google Scholar 

  62. Simon S, Duran M, Dannenberg JJ (1996) J Chem Phys 105:11024

    Article  CAS  Google Scholar 

  63. Mulliken R (1955) J Chem Phys 23:1833

    Article  CAS  Google Scholar 

  64. Philips JJ, Hudspeth MA, Browne PM Jr, Peralta JE (2010) Chem Phys Lett 495:146

    Article  CAS  Google Scholar 

  65. Hirshfeld FL (1977) Theor Chim Acta 44:129

    Article  CAS  Google Scholar 

  66. Bader RFW (1990) Atoms in molecules: a quantum theory. Oxford University Press, Oxford

    Google Scholar 

  67. Johnson ER, Keinan S, Mori-Sánchez P, Contreras-García J, Cohen AJ, Yang W (2010) J Am Chem Soc 132:6498

    Article  CAS  Google Scholar 

  68. Lu T, Chen F (2012) J Comput Chem 33:580

    Article  Google Scholar 

  69. Zhang G, Musgrave CB (2007) J Phys Chem A 111:1554

    Article  CAS  Google Scholar 

  70. Coropceanu V, Cornil J, Filho DAS, Olivier Y, Silvey R, Brédas JL (2007) Chem Rev 107:926

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Gregorio García acknowledges the funding by Junta de Castilla y León (Spain), cofunded by European Social Fund, for a postdoctoral contract. This work was funded by Ministerio de Economía y Competitividad (Spain, Project CTQ2013-40476-R) and Junta de Castilla y León (Spain, Project BU324U14). We also acknowledge The Foundation of Supercomputing Center of Castile and León (FCSCL, Spain), Computing and Advanced Technologies Foundation of Extremadura (CénitS, LUSITANIA Supercomputer, Spain) and Consortium of Scientific and Academic Services of Cataluña (CSUC, Spain) for providing supercomputing facilities. The statements made herein are solely the responsibility of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Santiago Aparicio.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 708 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

García, G., Atilhan, M. & Aparicio, S. Flavonols on graphene: a DFT insight. Theor Chem Acc 134, 57 (2015). https://doi.org/10.1007/s00214-015-1660-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-015-1660-4

Keywords

Navigation