Skip to main content
Log in

Structures, stabilities, and electronic properties of the neutral and anionic Si n Smλ (n = 1–9, λ = 0, −1) clusters: comparison with pure silicon clusters

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

Geometric structures, stabilities, and electronic properties of Si λ n+1 and Si n Smλ (n = 1–9, λ = 0, −1) clusters have been investigated systematically using density functional method at four levels. Extensive searches for ground state structures were carried out by the comparison between simulated spectra and the measured photoelectron spectroscopy. The results show that Sm atom tends to occupy the low-coordinated position and edge-cap or face-cap on the silicon frames. The lowest energy structures of Si n Sm0/− favor planar structures for n = 1–3 and three-dimensional structures for n = 4–9. Based on the averaged binding energies and fragmentation energies, we predict that Si4Sm and Si2Sm clusters have the higher relative stabilities. Furthermore, the patterns of HOMOs and derivatives of ρ for the most stable doped isomers are investigated to gain insight into the nature of bonding. The result shows that π-type or σ-type bonds are always formed among the Si atoms, and the interaction between the Sm and Si atoms is very weak. To achieve a deep insight into localization of charge and reliable charge-transfer information, the Mulliken population are analyzed and discussed. In addition, the electrostatic potential, which is well established as a guide to the interpretation and prediction of molecular behavior, is performed for the lowest energy structures of Si n Smλ (n = 1–9, λ = 0, −1) clusters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Beck SM (1989) J Chem Phys 90:6306

    Article  CAS  Google Scholar 

  2. Jaeger JB, Jaeger TD, Duncan MA (2006) J Phys Chem A 110:9310

    Article  CAS  Google Scholar 

  3. Janssens E, Gruene P, Meijer G, Woste L, Lievens P, Fielicke A (2007) Phys Rev Lett 99:063401

    Article  Google Scholar 

  4. Koyasu K, Atobe J, Akutsu M, Mitsui M, Nakajima A (2007) J Phys Chem A 111:42

    Article  CAS  Google Scholar 

  5. Ohara M, Koyasu K, Nakajima A, Kaya K (2003) Chem Phys Lett 371:490

    Article  CAS  Google Scholar 

  6. Zheng W, Nilles JM, Radisic D, Bowen KH (2005) J Chem Phys 122:071101

    Article  Google Scholar 

  7. Hiura H, Miyazaki T, Kanayama T (2001) Phys Rev Lett 86:1733

    Article  CAS  Google Scholar 

  8. Kumar V, Kawazoe Y (2001) Phys Rev Lett 87:045503

    Article  CAS  Google Scholar 

  9. Miyazaki T, Hiura H, Kanayama T (2002) Phys Rev B 66:121403

    Article  Google Scholar 

  10. Hagelberg F, Xiao C, Lester WA (2003) Phys Rev B 67:035426

    Article  Google Scholar 

  11. Han JG, Shi YY (2001) Chem Phys 266:33

    Article  CAS  Google Scholar 

  12. Jackson K, Nellermoe B (1996) Chem Phys Lett 254:249

    Article  CAS  Google Scholar 

  13. Khanna SN, Rao BK, Jena P (2002) Phys Rev Lett 89:016803

    Article  CAS  Google Scholar 

  14. Khanna SN, Rao BK, Jena P, Nayak SK (2003) Chem Phys Lett 373:433

    Article  CAS  Google Scholar 

  15. Kumar V (2004) Comput Mater Sci 30:260

    Article  CAS  Google Scholar 

  16. Kumar V (2006) Comput Mater Sci 35:375

    Article  CAS  Google Scholar 

  17. Kumar V (2006) Comput Mater Sci 36:1

    Article  CAS  Google Scholar 

  18. Kumar V, Majumder C, Kawazoe Y (2002) Chem Phys Lett 363:319

    Article  CAS  Google Scholar 

  19. Reveles UJ, Khanna SN (2006) Phys Rev B 74:035435

    Article  Google Scholar 

  20. Sen P, Mitas L (2003) Phys Rev B 68:155404

    Article  Google Scholar 

  21. Ngan VT, Gruene P, Claes P, Janssens E, Fielicke A, Nguyen MT, Lievens P (2010) J Am Chem Soc 132:15589

    Article  CAS  Google Scholar 

  22. Ngan VT, Janssens E, Claes P, Lyon JT, Fielicke A, Nguyen MT, Lievens P (2012) Chem Eur J 18:15788

    Article  CAS  Google Scholar 

  23. Ngan VT, Pierloot K, Nguyen MT (2013) Phys Chem Chem Phys 15:5493

    Article  CAS  Google Scholar 

  24. Claes P, Ngan VT, Haertelt M, Lyon JT, Fielicke A, Nguyen MT, Lievens P, Janssens E (2013) J Chem Phys 138:194301

    Article  Google Scholar 

  25. Beck SM (1987) J Chem Phys 87:4233

    Article  CAS  Google Scholar 

  26. Lau JT, Hirsch K, Klar P, Langenberg A, Lofink F, Richter R, Rittmann J, Vogel M, Zamudio-Bayer V, Möller T, Issendorff BV (2009) Phys Rev A 79:053201

    Article  Google Scholar 

  27. Kong XY, Xu HG, Zheng W (2012) J Chem Phys 137:064307

    Article  Google Scholar 

  28. Shao P, Kuang XY, Ding LP, Zhong MM, Wang ZH (2012) Phys B 407:4379

    Article  CAS  Google Scholar 

  29. Zhao YR, Kuang XY, Wang SJ, Li YF, Lu P (2011) Z Naturforsch 66:353

    Article  CAS  Google Scholar 

  30. Grubisic A, Wang HP, Ko YJ, Bowen KH (2008) J Chem Phys 129:054302

    Article  Google Scholar 

  31. Ohara M, Miyajima K, Pramann A, Nakajima A, Kaya K (2002) J Phys Chem A 106:3702

    Article  CAS  Google Scholar 

  32. Ohara M, Miyajima K, Pramann A, Nakajima A, Kaya K (2007) J Phys Chem A 111:10884

    Article  CAS  Google Scholar 

  33. Kumar V, Singh AK, Kawazoe Y (2006) Phys Rev B 74:125411

    Article  Google Scholar 

  34. Grubisic A, Ko YJ, Wang H, Bowen KH (2009) J Am Chem Soc 131:10783

    Article  CAS  Google Scholar 

  35. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA Jr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov B, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2004) Gaussian 03, revision E.01. Gaussian, Wallingford

    Google Scholar 

  36. Becke AD (1993) J Chem Phys 98:5648

    Article  CAS  Google Scholar 

  37. Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785

    Article  CAS  Google Scholar 

  38. Perdew JP (1991) In: Ziesche P, Eschrig H (eds) Electronic structure of solids. Akademie Verlag, Berlin, pp 11–20

    Google Scholar 

  39. Perdew JP, Chevary JA, Vosko SH, Jackson KA, Pederson MR, Singh DJ, Fiolhais C (1992) Phys Rev B 46:6671

    Article  CAS  Google Scholar 

  40. Perdew JP, Wang Y (1992) Phys Rev B 45:13244

    Article  Google Scholar 

  41. Purvis GD, Bartlett RJ (1982) J Chem Phys 76:1910

    Article  CAS  Google Scholar 

  42. Scuseria GE, Janssen CL, Schaefer HF III (1988) J Chem Phys 89:7382

    Article  CAS  Google Scholar 

  43. Scuseria GE, Schaefer HF III (1989) J Chem Phys 90:3700

    Article  CAS  Google Scholar 

  44. Krishnan R, Binkley JS, Seeger R, Pople JA (1980) J Chem Phys 72:650

    Article  CAS  Google Scholar 

  45. Dolg M, Stoll H, Savin A, Preuss H (1989) Theor Chim Acta 75:173

    Article  CAS  Google Scholar 

  46. Dolg M, Stoll H, Preuss H (1989) J Chem Phys 90:1730

    Article  CAS  Google Scholar 

  47. Yang JC, Xu WG, Xiao WS (2005) J Mol Struct Theochem 719:89

    Article  CAS  Google Scholar 

  48. Pouchan C, Bégué D, Zhang DY (2004) J Chem Phys 121:4628

    Article  CAS  Google Scholar 

  49. Jackson K, Pederson MR, Porezag D, Hajnal Z, Frauenheim T (1997) Phys Rev B 55:2549

    Article  CAS  Google Scholar 

  50. Binggeli N, Chelikowsky JR (1997) Phys Rev Lett 75:493

    Article  Google Scholar 

  51. Kostko O, Leone SR, Duncan MA, Ahmed M (2010) J Phys Chem A 114:3176

    Article  CAS  Google Scholar 

  52. Zhao GF, Sun JM, Gu YZ, Wang YX (2009) J Chem Phys 131:114312

    Article  Google Scholar 

  53. Liu TG, Zhao GF, Wang YX (2011) Phys Lett A 375:1120

    Article  CAS  Google Scholar 

  54. Nimlos MR, Harding BL, Ellison GB (1987) J Chem Phys 87:5116

    Article  CAS  Google Scholar 

  55. Huber KP, Herzberg G (1979) Molecular spectra and molecular structure, constants of diatomic molecules, vol IV. Van Nostrand Reinhold, New York

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Cheng-Gang Li, Li-Jun Pan or Peng Shao.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 10942 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, CG., Pan, LJ., Shao, P. et al. Structures, stabilities, and electronic properties of the neutral and anionic Si n Smλ (n = 1–9, λ = 0, −1) clusters: comparison with pure silicon clusters. Theor Chem Acc 134, 34 (2015). https://doi.org/10.1007/s00214-015-1623-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-015-1623-9

Keywords

Navigation