Skip to main content
Log in

Isaiah Shavitt: Computational chemistry pioneer

  • Overview
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

Isaiah (Shi) Shavitt (1925–2012) was a pioneer in using digital computers to study chemical problems. From the days of vacuum tube computers with no floating point arithmetic to the days of massively powerful computers, he showed how we could solve otherwise intractable chemical problems by making use of computers. He started with a statistical mechanical problem and soon switched to quantum mechanical problems. He and his associates showed how the configuration interaction method worked, both in terms of advantages and difficulties. An early problem was the effect of tunneling on kinetics calculations on an H3 potential energy surface. Later problems included the π-electron excited states of benzene and the lowest excited state of methylene. He showed how spin-eigenfunctions could be used efficiently in configuration interaction calculations instead of Slater determinants. His leadership led to the Columbus suite of programs put together with many collaborators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Reference

  1. Kaldor U, Pitzer RM (1996) Isaiah Shavitt. J Phys Chem 100:6017–6022

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. M. Pitzer.

Additional information

Published as part of the special collection of articles dedicated to the memory of Professor Isaiah Shavitt and celebrating his many contributions.

Appendix

Appendix

Publications of Isaiah Shavitt

  1. 1.

    S. F. Boys, G. B. Cook, C. M. Reeves, and I. Shavitt, Automatic Fundamental Calculation of Molecular Structure, Nature, 178, 1207–1209 (1956).

  2. 2.

    I. Shavitt and S. F. Boys, A General Expression for Intermolecular Potentials, Nature, 178, 1340 (1956).

  3. 3.

    S. F. Boys, I. Jones, and I. Shavitt, Quelques Problèmes et Résultats de Prévision de Propriétés Moléculaires Fondamentales par le Calcul Automatique, in Calcul des Fonctions d’Onde Moléculaire (Colloques Internationaux du Centre National de la Recherche Scientifique) (R. Daudel, editor), 82, C.N.R.S., Paris (1958), pp. 253–261.

  4. 4.

    S. F. Boys and I. Shavitt, A Fundamental Calculation of the Energy Surface for the System of Three Hydrogen Atoms, University of Wisconsin Naval Research Laboratory Report WIS-AF-13 (1959).

  5. 5.

    I. Shavitt, The Tunnel Effect Correction to the Rates of Reactions with Parabolic and Eckart Barriers, University of Wisconsin Theoretical Chemistry Laboratory Report WIS-AEC-23 (1959).

  6. 6.

    I. Shavitt, A Calculation of the Rates of the Ortho-Para Conversions and Isotope Exchanges in Hydrogen, J. Chem. Phys. 31, 1359–1367 (1959).

  7. 7.

    S. F. Boys and I. Shavitt, Intermolecular Forces and Properties of Fluids. I. The Automatic Calculation of Higher Virial Coefficients and Some Values of the Fourth Coefficient for the Lennard-Jones Potential, Proc. Roy. Soc. London, A254, 487–498 (1960).

  8. 8.

    S. F. Boys and I. Shavitt, Intermolecular Forces and Properties of Fluids. II. A General Functional Representation of Intermolecular Potentials and Some Values of the 2nd, 3rd, and 4th Virial Coefficients for Systematically Differing Potentials, Proc. Roy. Soc. London, A254, 499–506 (1960).

  9. 9.

    I. Shavitt and M. Karplus, Multicenter Integrals in Molecular Quantum Mechanics, J. Chem. Phys. 36, 550–551 (1962).

  10. 10.

    M. Karplus and I. Shavitt, Multicenter Pi-Electron Integrals for the Benzene Molecule, J. Chem. Phys. 38, 1256–1257 (1963).

  11. 11.

    I. Shavitt, The Gaussian Function in Calculations of Statistical Mechanics and Quantum Mechanics, Meth. Comput. Phys. 2, 1–45 (1963).

  12. 12.

    I. Shavitt and M. Karplus, Gaussian Transform Method for Molecular Integrals. I. Formulation for Energy Integrals, J. Chem. Phys. 43, 398–414 (1965).

  13. 13.

    U. Kaldor and I. Shavitt, LCAO-SCF Computations for Hydrogen Peroxide, J. Chem. Phys. 44, 1823–1829 (1966).

  14. 14.

    U. Kaldor and I. Shavitt, LCAO-SCF Computations for Ammonia, J. Chem. Phys. 45, 888–895 (1966).

  15. 15.

    U. Kaldor and I. Shavitt, LCAO-SCF Computations for Ethylene, J. Chem. Phys. 48, 191–203 (1968).

  16. 16.

    Z. Gershgorn and I. Shavitt, The Construction of Symmetry Adapted Functions in Configuration Interaction Calculations for Molecules with One Principal Axis of Symmetry, Int. J. Quantum Chem. Symp. 1, 403–417 (1967).

  17. 17.

    I. Shavitt, R. M. Stevens, F. L. Minn, and M. Karplus, Potential Energy Surface for H3, J. Chem. Phys. 48, 2700–2713 (1968).

  18. 18.

    Z. Gershgorn and I. Shavitt, An Application of Perturbation Theory Ideas in Configuration Interaction Calculations, Int. J. Quantum Chem. 2, 751–759 (1968).

  19. 19.

    A. Pipano and I. Shavitt, Convergence Studies and the Selection for Configuration Functions in Configuration Interaction Calculations, Int. J. Quantum Chem. 2, 741–749 (1968).

  20. 20.

    I. Shavitt, A Correlation of Experimental Rate Constants of the Hydrogen Exchange Reactions with a Theoretical H3 Potential Surface, Using Transition State Theory, J. Chem. Phys. 49, 4048–4056 (1968).

  21. 21.

    M. Rubinstein and I. Shavitt, Theoretical Study of the Potential Surface for the H4 System by Double-Zeta Configuration Interaction Calculations, J. Chem. Phys. 51, 2014–2024 (1969).

  22. 22.

    A. Pipano, R. R. Gilman, C. F. Bender, and I. Shavitt, Ab Initio Calculation of the Inversion Barrier in Ammonia, Chem. Phys. Lett. 5, 583–584 (1970).

  23. 23.

    A. Pipano, R. R. Gilman, and I. Shavitt, Invariance of Inner Shell Correlation Energy with Geometry Changes in a Polyatomic Molecule, Chem. Phys. Lett. 5, 285–287 (1970).

  24. 24.

    I. Shavitt, Modification of Nesbet’s Algorithm for the Iterative Evaluation of Eigenvalues and Eigenvectors of Large Matrices, J. Comput. Phys. 6, 124–130 (1970).

  25. 25.

    C. F. Bender and I. Shavitt, An Iterative Procedure for the Calculation of the Lowest Real Eigenvalue and Eigenvector of a Non-Symmetric Matrix, J. Comput. Phys. 6, 146–149 (1970).

  26. 26.

    R. P. Hosteny, R. R. Gilman, T. H. Dunning, Jr., A. Pipano, and I. Shavitt, Comparison of Slater and Contracted Guassian Basis Sets in SCF and CI Calculations of H2O, Chem. Phys. Lett. 7, 325–328 (1970).

  27. 27.

    J. Paldus, J. Čížek, and I. Shavitt, Correlation Problems in Atomic and Molecular Systems, IV. Extended Coupled-Pair Many-Electron Theory and Its Application to the BH3 Molecule, Phys. Rev. A. 5, 50–67 (1972).

  28. 28.

    I. Shavitt, C. F. Bender, A. Pipano, and R. P. Hosteny, The Iterative Calculation of Several of the Lowest or Highest Eigenvalues and Corresponding Eigenvectors of Very Large Symmetric Matrices, J. Comput Phys. 11, 90–108 (1973).

  29. 29.

    T. H. Dunning, Jr., R. P. Hosteny, and I. Shavitt, Low-Lying π-Electron States of trans-Butadiene, J. Am. Chem. Soc. 95, 5067–5068 (1973).

  30. 30.

    P. J. Hay and I. Shavitt, Large-Scale Configuration Interaction Calculations on the π-Electron States of Benzene, Chem. Phys. Lett. 22, 33–36 (1973).

  31. 31.

    P. J. Hay and I. Shavitt, Ab Initio Configuration Interaction Studies of the π-Electron States of Benzene, J. Chem. Phys. 60, 2865–2877 (1974).

  32. 32.

    L. R. Kahn, P. J. Hay, and I. Shavitt, Theoretical Study of Curve Crossing: Ab Initio Calculations on the Four Lowest 1Σ+ States of LiF, J. Chem. Phys. 61, 3530–3546 (1974).

  33. 33.

    R. P. Hosteny, T. H. Dunning, Jr., R. R. Gilman, A. Pipano, and I. Shavitt, Ab Initio Study of the π-Electron States of trans-Butadiene, J. Chem. Phys. 62, 4764–4779 (1975).

  34. 34.

    B. J. Rosenberg and I. Shavitt, Ab Initio SCF and CI Studies on the Ground State of the Water Molecule. I. Comparison of CGTO and STO Basis Sets near the Hartree–Fock Limit, J. Chem. Phys. 63, 2162–2174 (1975).

  35. 35.

    I. Shavitt, B. J. Rosenberg, and S. Palalikit, Comparison of Configuration Interaction Expansions Based on Different Orbital Transitions, Int. J. Quantum Chem. Symp. 10, 33–46 (1976); erratum, ibid. 11, 651 (1977).

  36. 36.

    I. Shavitt, Computers and Quantum Chemistry, in Computer Science and Scientific Computing (J. M. Ortega, editor), Academic Press (1976), pp. 227–253.

  37. 37.

    B. J. Rosenberg, W. C. Ermler, and I. Shavitt, Ab Initio SCF and CI Studies on the Ground State of the Water Molecule. II. Potential Energy and Property Surfaces, J. Chem. Phys. 65, 4072–4080 (1976).

  38. 38.

    R. C. Raffenetti, K. Hsu, and I. Shavitt, Selection of Terms for a CI Wavefunction to Preserve Potential Surface Features, Theor. Chim. Acta 45, 33–44 (1977).

  39. 39.

    I. Shavitt, The Method of Configuration Interaction, in Methods of Electronic Structure Theory (Modern Theoretical Chemistry, Vol 3) (H. F. Schaefer III, editor), Plenum Press, New York (1977), pp. 189–275.

  40. 40.

    I. Shavitt, Graph Theoretical Concepts for the Unitary Group Approach to the Many-Electron Correlation Problem, Int. J. Quantum Chem. Symp. 11, 131–148 (1977).

  41. 41.

    R. J. Bartlett and I. Shavitt, Determination of the Size-Consistency Error in the Single and Double Excitation Configuration Interaction Model, Int. J. Quantum Chem. Symp. 11, 165–173 (1977); erratum, ibid. 12 543–544 (1978).

  42. 42.

    R. J. Bartlett and I. Shavitt, Comparison of High-Order Many-Body Perturbation Theory and Configuration Interaction for H2O, Chem. Phys. Lett. 50, 190–198 (1977); erratum, ibid. 57, 157–158 (1978).

  43. 43.

    C. W. Bauschlicher and I. Shavitt, Accurate ab initio Calculations on the Singlet–Triplet Separation in Methylene, J. Am. Chem. Soc. 100, 739–743 (1978).

  44. 44.

    I. Shavitt, Matrix Element Evaluation in the Unitary Group Approach to the Electron Correlation Problem, Int. J. Quantum Chem. Symp. 12, 5–32 (1978).

  45. 45.

    I. Shavitt, The Utilization of Abelian Point Group Symmetry in the Graphical Unitary Group Approach to the Calculation of Correlated Electronic Wavefunctions, Chem. Phys. Lett. 63, 421–427 (1979).

  46. 46.

    R. J. Bartlett, I. Shavitt, and G. D. Purvis, The Quartic Force Field of H2O Determined by Many-Body Methods that Include Quadruple Excitation Effects, J. Chem. Phys. 71, 281–291 (1979).

  47. 47.

    I. Shavitt, The Graphical Unitary Group Approach (GUGA) to the Electron Correlation Problem-Survey and Recent Advances, in Electron Correlation: Proceedings of the Daresbury Study Weekend, 1718 November, 1979 (M. F. Guest and S. Wilson, editors), Science Research Council, Daresbury Laboratory, Warringon, England (1980), pp. 60–68.

  48. 48.

    C. W. Bauschlicher Jr. and I. Shavitt, A Low-Energy Passage for C+ + H2 → CH+ (1Σ+) + H, Chem. Phys. Lett. 75, 62–65 (1980).

  49. 49.

    I. Shavitt and L. T. Redmon, Quasidegenerate Perturbation Theories. A Canonical van Vleck Formalism and Its Relationship to Other Approaches. J. Chem. Phys. 73, 5711–5717 (1980).

  50. 50.

    C. F. Jackels and I. Shavitt, Accuracy of Energy Extrapolation in Multireference Configuration Interaction Calculations, Theor. Chim. Acta 58, 81–96 (1981).

  51. 51.

    I. Shavitt, The Graphical Unitary Group Approach and Its Application to Direct Configuration Interaction Calculations, in The Unitary Group for the Evaluation of Electronic Energy Matrix Elements (Lectures Notes in Chemistry 22) (J. Hinze, editor), Springer Verlag, Berlin (1981), pp. 51–99.

  52. 52.

    M. J. Redmon, R. J. Bartlett, B. C. Garrett, G. D. Purvis III, P. M. Saatzer, G. C. Schatz, and I. Shavitt, Collisional Excitation of H2O by O-Atom Impact : Classical Dynamics on an Accurate ab initio Potential Energy Surface, in Potential Energy Surfaces and Dynamics Calculations (D. G. Truhlar, editor), Plenum, New York (1981), pp. 771–803.

  53. 53.

    H. Lischka, R. Shepard, F. B. Brown, and I. Shavitt, New Implementation of the Graphical Unitary Group Approach for Multireference Direct Configuration Interaction Calculations, Int. J. Quantum Chem. Symp. 15, 91–100 (1981).

  54. 54.

    P. G. Lykos and I. Shavitt, editors, Supercomputers and Chemistry (ACS Symposium Series 173), American Chemical Society, Washington, D. C. (1981), 278 pp.

  55. 55.

    R. Shepard, I. Shavitt, and J. Simons, Comparison of Convergence Characteristics of Some Iterative Wave Function Optimization Methods, J. Chem. Phys. 76, 543–557 (1982).

  56. 56.

    G. Born and I. Shavitt, A Unitary Group Formulation of Open-Shell Electron Propagator Theory, J. Chem. Phys. 76, 558–567 (1982).

  57. 57.

    P. Čársky, M. Svrček, I. Hubač, F. B. Brown, and I. Shavitt, Correlation Energy in Triplet States. Comparison of Many-Body Perturbation Theory and Configuration Interaction for CH2 and O2, Chem. Phys. Lett. 85, 17–20 (1982).

  58. 58.

    I. Shavitt, The Unitary Group and the Electron Correlation Problem, in New Horizons of Quantum Chemistry (P.-O. Löwdin and B. Pullman, editors), Reidel, Dordrecht (1983), pp. 279–293.

  59. 59.

    F. B. Brown, I. Shavitt, and R. Shepard, Multireference Configuration Interaction Treatment of Potential Energy Surfaces: Symmetric Dissociation of H2O in a Double-Zeta Basis, Chem. Phys. Lett. 105, 363–369 (1984).

  60. 60.

    I. Shavitt, The Treatment of Electron Correlation: Where Do We Go From Here? in Advanced Theories and Computational Approaches the Electronic Structure of Molecules (C. E. Dykstra, editor), Reidel, Dordrecht (1984). pp. 185–196.

  61. 61.

    I. Shavitt, Geometry and Singlet-Triplet Energy Gap in Methylene: A Critical Review of Experimental and Theoretical Determinations, Tetrahedron 41, 1531–1542 (1985).

  62. 62.

    W. C. Ermler, B. J. Rosenberg, and I. Shavitt, Ab Initio SCF and CI Studies on the Ground State of the Water Molecule. III. Vibrational Analysis of Potential Energy and Property Surfaces, in Comparison of Ab Initio Quantum Chemistry with Experiment: State of the Art (R. J. Bartlett, editor), Reidel, Dordrecht (1985), pp. 171–215.

  63. 63.

    D. C. Comeau, R. J. Zellmer, and I. Shavitt, The Location and Characterization of Stationary Points on Molecular Potential Energy Surfaces, in Geometrical Derivatives of Energy Surfaces and Molecular Properties (P. Jørgensen and J. Simons, editors), Reidel, Dordrecht (1986), pp. 243–251.

  64. 64.

    I. Shavitt, F. B. Brown, and P. G. Burton, Configuration Selection and Extrapolation in Multireference Configuration Interaction Calculations: The (H2)2 van der Waals Complex as a Benchmark Example, Int. J. Quantum Chem. 31, 507–520 (1987).

  65. 65.

    R. J. Barlett, S. J. Cole, G. D. Purvis, W. C. Ermler, H. C. Hsieh, and I. Shavitt, The Quartic Force Field of H2O Determined by Many-Body Methods. II. Effects of Triple Excitations, J. Chem. Phys. 87, 6579–6591 (1987).

  66. 66.

    I. Shavitt, Unitary Group Approach to Configuration Interaction Calculations of the Electronic Structure of Atoms and Molecules, in Mathematical Frontiers in Computational Chemical Physics (D. G. Truhlar, editor), Springer-Verlag, Berlin (1988), pp. 300–349.

  67. 67.

    R. Ernenwein, M. Benard, and I. Shavitt, Vectorizing a Sequence of Conditional Branches: the Calculation of the Class Index of Two-Electron Repulsion Integrals on Cray Computers, Comput. Phys. Commun. 48, 175–180 (1988).

  68. 68.

    R. Shepard, I. Shavitt, R. M. Pitzer, D. C. Comeau, M. Pepper, H. Lischka, P. G. Szalay, R. Ahlrichs, F. B. Brown, and J.–G. Zhao, A Progress Report on the Status of the COLUMBUS MRCI Program System, Int. J. Quantum Chem. Symp. 22, 149–165 (1988).

  69. 69.

    D. C. Comeau, I. Shavitt, P. Jensen, and P. R. Bunker, An ab initio Determination of the Potential Energy Surfaces and Rotation-Vibration Energy Levels of Methylene in the Lowest Triplet and Singlet States and the Single-Triplet Splitting, J. Chem. Phys. 90, 6491–6500 (1989).

  70. 70.

    J. E. Del Bene and I. Shavitt, Comparison of Methods for Determining the Correlation Contributions to Hydrogen Bond Energies, Int. J. Quantum Chem. Symp. 23, 445–452 (1989).

  71. 71.

    J. E. Del Bene and I. Shavitt, Comparison of Theoretical Methods for the Determination of the Protonation and Deprotonation Energies of NH3, H2O, HF, PH3, H2S, HCl, and HCN, J. Phys. Chem. 94, 5514–5518 (1990).

  72. 72.

    J. E. Del Bene, E. A. Stahlberg, and I. Shavitt, A Theoretical Study of the Complexes of N2O with H+, Li+, and HF Using Various Correlation Methods, Int. J. Quantum Chem. Symp. 24, 455–466 (1990).

  73. 73.

    J. E. Del Bene and I. Shavitt, Comparison of Theoretical Methods for the Determination of the Li+ Affinities of Neutral and Anionic First- and Second-Row Bases, Int. J. Quantum Chem. Symp. 24, 365–373 (1990).

  74. 74.

    J. E. Del Bene, K. Kim, and I. Shavitt, An ab initio Study of Symmetry Breaking in Calculations on the First Excited Singlet State of N2H2, Can. J. Chem. 69, 246–250, (1991).

  75. 75.

    J. E. Del Bene, H. D. Mettee, and I. Shavitt, The Structure, Binding Energy, and Vibrational Frequencies of CH3CN…HCl, J. Phys. Chem. 95, 5387–5388 (1991).

  76. 76.

    J. E. Del Bene and I. Shavitt, A Theoretical Study of the Neutral, Protonated, and Deprotonated Trimers of HF and HCl, J. Mol. Struct. (THEOCHEM) 234, 499–508 (1991).

  77. 77.

    I. Shavitt, J. E. Del Bene, and D. W. Ewing, Ab Initio Study of Spiropentadiene, C5H4, J. Am. Chem. Soc. 113, 9389–9391 (1991).

  78. 78.

    R. D. Kent, M. Schlesinger, and I. Shavitt, Graphical Unitary Group Approach to Spin–Spin Interaction, Int. J. Quantum Chem. 41, 89–103 (1992).

  79. 79.

    J. E. Del Bene, D. H. Aue, and I. Shavitt, Stabilities of Hydrocarbons and Carbocations. I. A Comparison of Augmented 6-31G, 6-311G, and Correlation-Consistent Basis Sets, J. Am. Chem. Soc. 114, 1631–1640 (1992).

  80. 80.

    I. Shavitt, The Ak and Bk Approximate CI Methods. Comment on a Paper by Maynau and Heully, Chem. Phys. Lett. 192, 135–137 (1992).

  81. 81.

    K. Kim, I. Shavitt, and J. E. Del Bene, Theoretical Study of the Di-imide (N2H2) Molecule in Ground and n → π* Excited States, J. Chem. Phys. 96, 7573–7579 (1992).

  82. 82.

    D. W. Ewing and I. Shavitt, Double Zeta Basis Sets in Carbon Cluster Calculations, in Physics and Chemistry of Finite Systems: From Clusters to Crystals, Vol. I. (P. Jena, S. N. Khanna, and B. K. Rao, editors), Kluwers, Dordrecht, Holland (1992), pp. 561–567.

  83. 83.

    I. Shavitt, The History and Evolution of Gaussian Basis Sets, Israel J. Chem. 33, 357–368 (1993).

  84. 84.

    J. E. Del Bene and I. Shavitt, Basis-Set Effects on Computer Acid–Base Interaction Energies Using the Dunning Correlation-Consistent Polarized Split-Valence Basis Sets, J. Mol. Struct, (THEOCHEM) 307, 27–34 (1994).

  85. 85.

    J. E. Del Bene and I. Shavitt, An ab initio Study of the Complexes of HCl with the Chloromethanes, J. Mol. Struct. (THEOCHEM) 314, 9–17 (1994).

  86. 86.

    M. J. M. Pepper, I. Shavitt, P. v. R. Schleyer, M. N. Glukhovstev, R. Janoschek, and M. Quack, Is the Stereomutation of Methane Possible? J. Comput. Chem. 16, 207–225 (1995).

  87. 87.

    L. Ojamäe, I. Shavitt, and S. J. Singer, Potential Energy Surfaces and Vibrational Spectra of H5O2 + and Larger Hydrated Proton Complexes, Int. J. Quantum Chem. Symp. 29, 657–668 (1995).

  88. 88.

    N. C. Handy, J. A. Pople, and I. Shavitt, Samuel Francis Boys, J. Phys. Chem. 100, 6007–6016 (1996).

  89. 89.

    G. S. Kedziora and I. Shavitt, Calculation and Fitting of Potential Energy and Dipole Moment Surfaces for the Water Molecule: Fully ab initio Determination of Vibrational Transition Energies and Band Intensities, J. Chem. Phys. 106, 8733–8745 (1997).

  90. 90.

    J. E. Del Bene and I. Shavitt, The Quest for Reliability in Calculated Properties of Hydrogen-bonded Complexes, in Molecular Interactions, From van der Waals to Strongly Bound Complexes, (Wiley Tutorial Series in Theoretical Chemistry) (S. Scheiner, editor), Wiley: Chichester (1997), pp. 157–179.

  91. 91.

    I. Shavitt, The History and Evolution of Configuration Interaction, Mol. Phys. 94, 3–17 (1998).

  92. 92.

    L. Ojamäe, I. Shavitt, and S. J. Singer, Potential Models for Simulations of the Solvated Proton in Water, J. Chem. Phys. 109, 5547–5564 (1998).

  93. 93.

    C. V. Ciobanu, L. Ojamäe, I. Shavitt, and S. J. Singer, Structure and Vibrational Spectra of H+(H2O)8: Is the Excess Proton in a Symmetrical Hydrogen Bond? J. Chem. Phys. 113, 5321–5330.

  94. 94.

    H. Lischka, R. Shepard, R. M. Pitzer, I. Shavitt, M. Dallos, T. Müller, P. G. Szalay, M. Seth, G. S. Kedziora, S. Yabushita, and Z. Zhang, High-Level Multireference Methods in the Quantum-Chemistry Program System COLUMBUS: Analytic MR-CISD and MR-AQCC Gradients and MR-AQCC-LRT for Excited States, GUGA Spin–Orbit CI and Parallel CI Density, Phys. Chem. Chem. Phys. 3, 664–673 (2001).

  95. 95.

    R. Shepard, I. Shavitt, and H. Lischka, Software News and Updates Reducing I/O Costs for the Eigenvalue Procedure in Large-Scale Configuration Interaction Calculations, J. Comp. Chem. 23, 1121–1125 (2002).

  96. 96.

    I. Shavitt, Multi-State Multireference Rayleigh-Schroedinger Perturbation Theory for Mixed Electronic States: Second and Third Order, Int. J. Mol. Sci. 3, 639–655.

  97. 97.

    J.-L. Kuo, C.V. Ciobanu, L. Ojamäe, I. Shavitt, and S. J. Singer, Short H-Bonds and Spontaneous Self-dissociation in (H2O)20: Effects of H-Bond Topology, J. Chem. Phys. 118, 3583–3588.

  98. 98.

    J. A. Karwowski and I. Shavitt, Configuration Interaction, in Handbook of Molecular Physics and Quantum Chemistry (S. Wilson, editor) 2, Wiley: Chichester (2003), pp. 227–271.

  99. 99.

    I. Shavitt, Are Exponential-Type Basis Sets Preferable to Gaussians? Int. J. Quantum Chem. 100, 105–108 (2004).

  100. 100.

    J. R. Quinn, S. C. Zimmerman, J. E. Del Bene, and I. Shavitt, Does the A-T or G-C Base-Pair Possess Enhanced Stability? Quantifying the Effects of CH⋯O Interactions and Secondary Interactions on Base-Pair Stability Using a Phenomenological Analysis and ab initio Calculations, J. Am. Chem. Soc. 129, 934–941 (2007).

  101. 101.

    R. Shepard, G. S. Kedziora, H. Lischka, I. Shavitt, T. Müller, P. G. Szalay, M. Kállay, and M. Seth, The Accuracy of Molecular Bond Lengths Computed by Multireference Electronic Structure Methods, Chem. Phys. 349, 37–57 (2008).

  102. 102.

    I. Shavitt, Tribute to Russell M. Pitzer, J. Phys. Chem. A 113, 12339–12342 (2009).

  103. 103.

    J. R. Quinn, S. C. Zimmerman, J. E. Del Bene, and I. Shavitt, Prebiotic Selection of the AT Base Pair? A Physical Organic Approach to Understanding AT Base-Pair Stability Indicates Special Stability, in ACS Symposium Series (2009), 1025 (Chemical Evolution II), pp. 95–107.

  104. 104.

    I. Shavitt and R. J. Bartlett, Many-Body Methods in Chemistry and Physics: MBPT and Coupled-Cluster Theory, Cambridge University Press: Cambridge, (2009), 532 pp.

  105. 105.

    H. Lischka, T. Müller, P. G. Szalay, I. Shavitt, R. M. Pitzer, and R. Shepard, COLUMBUS-A Program System for Advanced Multireference Theory Calculations, in Wiley Interdisciplinary Reviews: Computational Molecular Science 1, (2011), pp. 191–199.

  106. 106.

    I. Shavitt, Perspective: Björn Roos and Direct Configuration Interaction, Int. J. Quantum Chem. 111, 3263–3266 (2011).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zimmerman, S.C., Pitzer, R.M. Isaiah Shavitt: Computational chemistry pioneer. Theor Chem Acc 133, 1488 (2014). https://doi.org/10.1007/s00214-014-1488-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-014-1488-3

Keywords

Navigation