Skip to main content
Log in

Trihalide cations MF3 +, MCl3 + and MBr +3 , M = B, Al, Ga: pseudo Jahn–Teller coupling, electronic spectra and ionization potentials of MX3

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

Optimized geometries and energies, vertical excitation energies and vibrational frequencies are reported for nine cations MX3 +, with M = B, Al, Ga, and X = F, Cl, Br. Density functional theory using long-range corrected functionals, coupled cluster and multireference configuration interaction methods were applied with triple-zeta polarized basis sets. All cations were shown to be distorted from the high D3h to the lower C2v symmetry due to a strong pseudo Jahn–Teller effect. Geometry optimizations lead to two 2B2 states, one with an X(axial)–M–X angle above 120°, to give a structure with one short and two long bonds (1S2L), the other having such angle below 120°, resulting in a structure with two short and one long bond (2S1L). In most cases, the 1S2L structure was found to be more stable than 2S1L, but the stabilization energies of 1S2L and 2S1L differ by no more than 0.2 eV. There is a saddle point at D3h symmetry. Adiabatic and vertical ionization energies of MX3 are also reported. Good to excellent agreement with available experimental data was found.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Oepik U, Pryce MLH (1957) Proc R Soc A238:425

    Article  Google Scholar 

  2. Jahn A, Teller E (1937) Proc R Soc A 161:220

    Article  CAS  Google Scholar 

  3. Grein F (2013) J Chem Phys 138:204305

    Article  Google Scholar 

  4. Grein F (2013) Chem Phys 423:151

    Article  CAS  Google Scholar 

  5. Haller E, Koeppel H, Cederbaum LS, von Niessen W, Bieri G (1983) J Chem Phys 78:1359

    Article  CAS  Google Scholar 

  6. Kaltsoyannis N, Price SD (1999) Chem Phys Lett 313:679

    Article  CAS  Google Scholar 

  7. Yang J, Mo Y, Lau KC, Song Y, Qian XM, Ng CY (2005) Phys Chem Chem Phys 7:1518

    Article  CAS  Google Scholar 

  8. Frisch MJ, Trucks GW, Schlegel HB et al (2009) Gaussian 09, Revision A.02. Gaussian, Inc., Wallingford CT

    Google Scholar 

  9. Ikura H, Tsuneda T, Yanai T, Hirao K (2001) J Chem Phys 115:3540

    Article  Google Scholar 

  10. Grimme S (2006) J Comp Chem 27:1787

    Article  CAS  Google Scholar 

  11. Werner H-J, Knowles PJ, Knizia G, Manby FR, Schuetz M (2012) WIREs Comput Mol Sci 2:242

    Article  CAS  Google Scholar 

  12. Werner H-J, Knowles PJ (2012) Molpro: a package of ab initio programs (see http://www.molpro.net for more details)

  13. Grimme S, Waletzke M (1999) J Chem Phys 111:5645

    Article  CAS  Google Scholar 

  14. Grimme S, Waletzke M (2000) Phys Chem Chem Phys 2:2075

    Article  CAS  Google Scholar 

  15. Schäfer A, Huber C, Ahlrichs R (1994) J Chem Phys 100:5829

    Article  Google Scholar 

  16. Langhoff SR, Davidson ER (1974) Int J Quant Chem 8:61

    Article  CAS  Google Scholar 

  17. Bruna PJ, Peyerimhoff SD, Buenker RJ (1980) Chem Phys Lett 72:278

    Article  CAS  Google Scholar 

  18. Romero J, Lane IC, Powis IJ (1993) Chem Soc Faraday Trans 89:1179

    Article  CAS  Google Scholar 

  19. Dyke JM, Kirby C, Morris A, Gravenor BWJ, Klein R, Rosmus P (1984) Chem Phys 88:289

    Article  CAS  Google Scholar 

  20. Mackie RA, Shpinkova LG, Holland DMP, Shaw DA (2003) Chem Phys 288:211

    Article  CAS  Google Scholar 

  21. Barker GK, Lappert MF, Pedley JB, Sharp GJ, Westwood NPC (1975) J Chem Soc Dalton Trans 1975:1765

  22. Bassett PJ, Lloyd DR (1971) J Chem Soc A 641:641–645

    Article  Google Scholar 

  23. Jacox ME, Thompson WE (2011) J Chem Phys 134:194306

    Article  Google Scholar 

  24. Miller JH, Andrews L (1980) J Am Chem Soc 102:4900

    Article  CAS  Google Scholar 

  25. Gutsev GL, Jena P, Bartlett RJ (1998) Chem Phys Lett 292:289

    Article  CAS  Google Scholar 

  26. Farber M, Srivastava RD (1984) J Chem Phys 81:241

    Article  CAS  Google Scholar 

  27. Dehmer JL, Parr AC, Southworth SH, Holland DMP (1984) Phys Rev A 30:1783

    Article  CAS  Google Scholar 

  28. Bassett PJ, Lloyd DR (1971) J Chem Soc A 1971:1551

  29. King GH, Krishnamurthy SS, Lappert MF, Pedley JB (1972) Faraday Discuss Chem Soc 54:70

    Article  Google Scholar 

  30. Porter RF, Zeller EE (1960) J Chem Phys 33:858

    Article  CAS  Google Scholar 

  31. Dehmer JL, Berkowitz J, Cusachs LC, Aldrich HS (1974) J Chem Phys 61:594

    Article  CAS  Google Scholar 

  32. NIST Chemistry WebBook, NIST Standard Reference Database Number 69, Eds. Linstrom PJ, Mallard WG

Download references

Acknowledgments

Financial support by NSERC (Canada) in form of a Discovery Grant is gratefully acknowledged. Thanks to Dr. Pablo J. Bruna for helpful discussions and valuable suggestions, and to ACEnet for providing adequate computing facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Friedrich Grein.

Additional information

Dedicated to the memory of Professor Isaiah Shavitt and published as part of the special collection of articles celebrating his many contributions.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 20 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grein, F. Trihalide cations MF3 +, MCl3 + and MBr +3 , M = B, Al, Ga: pseudo Jahn–Teller coupling, electronic spectra and ionization potentials of MX3 . Theor Chem Acc 133, 1482 (2014). https://doi.org/10.1007/s00214-014-1482-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-014-1482-9

Keywords

Navigation