Skip to main content
Log in

Insight into reaction mechanism and product formation a C8-purine radical in RNA: a theoretical perspective

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

We have investigated the base release, strand scission and cyclization reactions, induced by the C8 radical site in the adenine-8-yl ribonucleotide radical. Structural and energetic calculations are performed using hybrid (B3LYP) and double hybrid (B2PLYP) density functionals together with the 6-31 + G(d,p) basis set. Aqueous medium is simulated by the conductor-like polarized continuum model with ε = 78.4. Several rotamers exist in aqueous solution, which are fully studied herein. H-abstraction reactions of H2′ or H5′ of the ribose unit are found to be strongly exothermic, which can drive subsequent reactions. The barrier height for H2′ abstraction is estimated to 10.7–11.8 kcal/mol, which is ca. 5.0 kcal/mol higher than for H5′ abstraction. For rotamers 1 and 1′, the cyclization product is the only one, whereas base release and strand rupture reactions are forbidden in aqueous solution. For conformers 2 and 2′, glycosidic bond breakage has a barrier of 14.9 kcal/mol, which is comparable to that of the cyclization reaction. These are in striking contrast to the C3′O3′ bond rupture (strand scission), for which the barrier height is significantly lower. Thus, the yield of the cyclization products is strongly dependent on both the local conformation between the 2′OH and the 3′ phosphate groups and solvation effects. The unpaired spin distribution plays a significant role in the reactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. von Sonntag C (1987) The chemical basis of radiation biology. Taylor & Francis, London

    Google Scholar 

  2. Kow YW (2002) Free Radical Biol Med 33:886–893

    Article  CAS  Google Scholar 

  3. Labet V, Grand A, Cadet J, Eriksson LA (2008) Chem Phys Chem 9:1195–1203

    Article  CAS  Google Scholar 

  4. Butchosa C, Simon S, Voityuk AA (2010) Org Biomol Chem 8:1870–1875

    Article  CAS  Google Scholar 

  5. Perrier S, Hau J, Gasparutto D, Cadet J, Favier A, Ravanat JL (2006) J Am Chem Soc 128:5703–5710

    Article  CAS  Google Scholar 

  6. Loeb LA, Preston BD (1986) Annu Rev Genet 20:201–230

    Article  CAS  Google Scholar 

  7. Luo N, Litvin A, Osman R (1999) J Phys Chem A 103:592–600

    Article  CAS  Google Scholar 

  8. Li MJ, Liu L, Fu Y, Guo QX (2005) J Phys Chem B 109:13818–13826

    Article  CAS  Google Scholar 

  9. Balasubramanian B, Pogozelski WK, Tullius T (1998) Proc Natl Acad Sci USA 95:9738–9743

    Article  CAS  Google Scholar 

  10. Aydogan B, Marshall DT, Swarts SG, Turner JE, Boone AJ, Bolch NGWE (2002) Radiat Res 157:38–44

    Article  CAS  Google Scholar 

  11. von Sonntag C (2006) Free-radical-induced DNA damage and its repair. Springer, Berlin

    Google Scholar 

  12. Jaruga P, Rozalski R, Jawien A, Migdalski A, Olinski R, Dizdaroglu M (2012) Biochemistry 51:1822–1824

    Article  CAS  Google Scholar 

  13. Navacchia ML, Chatgilialoglu C, Montevecchi PC (2006) J Org Chem 71:4445–4452

    Article  CAS  Google Scholar 

  14. Karwowski BT, Grand A, Cadet J (2009) Acta Biochim Pol 56:655–662

    CAS  Google Scholar 

  15. Zhang RB, Eriksson LA (2006) Chem Phys Lett 417:303–308

    Article  CAS  Google Scholar 

  16. Chatgilialoglu C, Duca M, Ferreri C, Guerra M, Ioele M, Mulazzani QG, Strittmatter H, Giese B (2004) Chem Eur J 10:1249–1255

    Article  CAS  Google Scholar 

  17. Russo M, Jimenez LB, Mulazzani QG, D’Angelantonio M, Guerra M, Miranda MA, Chatgilialoglu C (2006) Chem Eur J 12:7684–7693

    Article  CAS  Google Scholar 

  18. Chatgilialoglu C, Ferreri C, Terzidis MA (2011) Chem Soc Rev 40:1368–1382

    Article  CAS  Google Scholar 

  19. Wetmore SD, Boyd RJ, Eriksson LA (2001) Chem Phys Lett 343:151–158

    Article  CAS  Google Scholar 

  20. Zhang RB, Eriksson LA (2006) J Phys Chem B 110:23583–23589

    Article  CAS  Google Scholar 

  21. Zhang RB, Gao FX, Eriksson LA (2007) J Chem Theory Comput 3:803–810

    Article  CAS  Google Scholar 

  22. Zhang RB, Eriksson LA (2008) Chem Eur J 14:2850–2856

    Article  CAS  Google Scholar 

  23. Zhang RB, Eriksson LA (2009) Chem Eur J 15(2394):2402

    Google Scholar 

  24. Wang R, Zhang RB, Eriksson LA (2010) J Phys Chem B 114:9617–9621

    Article  CAS  Google Scholar 

  25. Jacobs AC, Resendiz MJE, Greenberg MM (2010) J Am Chem Soc 132:3668–3669

    Article  CAS  Google Scholar 

  26. Becke AD (1993) J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  27. Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785–789

    Article  CAS  Google Scholar 

  28. Grimme S (2006) J Chem Phys 124:034108

    Article  Google Scholar 

  29. Schwabe T, Grimme S (2008) Acc Chem Res 41:569–579

    Article  CAS  Google Scholar 

  30. Cossi M, Rega N, Scalmani G, Barone V (2003) J Comput Chem 24:669–681

    Article  CAS  Google Scholar 

  31. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian, Inc., Wallingford CT

  32. Yokoyama S, Watanabe T, Murao K, Ishikura H, Yamaizumi Z, Nishimura S, Miyazawa T (1985) Proc Natl Acad Sci USA 82:4905–4909

    Article  CAS  Google Scholar 

  33. Yamamoto Y, Yokoyama S, Miyazawa T, Watanabe K, Higuchi S (1983) FEBS Lett 157:95–99

    Article  CAS  Google Scholar 

  34. Kumar RK, Davis DR (1997) Nucleic Acids Res 25:1272–1280

    Article  CAS  Google Scholar 

  35. Zhang RB, Eriksson LA (2010) Phys Chem Chem Phys 12:3690–3697

    Article  CAS  Google Scholar 

  36. Altona C, Sundaralingam M (1972) J Am Chem Soc 94:8205

    Article  CAS  Google Scholar 

  37. Strittmatter H, Dussy A, Schwitter U, Giese B (1999) Angew Chem Int Ed 38:135–137

    Article  CAS  Google Scholar 

  38. Hildenbrand K (1990) Z Naturforsch C Biosci 45C:47–58

    Google Scholar 

  39. Jacobs AC, Resendiz MJE, Greenberg MM (2011) J Am Chem Soc 133:5152–5159

    Article  CAS  Google Scholar 

  40. Resendiz MJE, Pottiboyina V, Sevilla MD, Greenberg MM (2012) J Am Chem Soc 134:3917–3924

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is supported by the National Nature Science Foundation of China (Grants 20643007 and 20703004). The Faculty of Science at the University of Gothenburg and the Swedish Research Council are also gratefully acknowledged for financial support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Leif A. Eriksson or Ru Bo Zhang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 891 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qi, C., Liu, F.C., Eriksson, L.A. et al. Insight into reaction mechanism and product formation a C8-purine radical in RNA: a theoretical perspective. Theor Chem Acc 132, 1355 (2013). https://doi.org/10.1007/s00214-013-1355-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-013-1355-7

Keywords

Navigation