Skip to main content

Advertisement

Log in

The influence of carbon dioxide cosolvent on solubility in poly(ethylene glycol)

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

Supercritical carbon dioxide (CO2) and poly(ethylene glycol) (PEG) can be utilized as an environmentally friendly biphasic solvent system for catalysis reactions and subsequent product separation. To efficiently implement this technology, it is important to understand how solutes partition between these phases as well as how dissolved CO2 in PEG affects the solvent properties. The work presented here explores the influence of CO2 on the solubility of four different solutes in PEG. The transferable potentials for phase equilibria-united atom force field and configurational-bias Monte Carlo molecular simulation were employed to determine the solubilities of ethylbenzene, 1-octene, 1-pentanol, and 2-pentanone at 323.15 K and 15 MPa in PEG-600 using an ideal vapor phase with a Poynting-corrected vapor pressure. The effect of CO2 concentration within the PEG phase was determined by varying the amount from no CO2 to the saturation limit. The results indicate that while there is preferential solvation of CO2 around the solutes, solubility of non-polar solutes is unchanged whereas there is a modest increase for polar solutes as the concentration of CO2 increases. Increased solubility is analyzed in terms of both modified solvent structure and direct solute–CO2 interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Heldebrant DJ, Jessop PG (2003) J Am Chem Soc 125:5600–5601

    Article  CAS  Google Scholar 

  2. Heldebrant DJ, Witt HN, Walsh SM, Ellis T, Rauscher J, Jessop PG (2006) Green Chem 8:807–815

    Article  CAS  Google Scholar 

  3. Wang J-Q, Cai F, Wang E, He L-N (2007) Green Chem 9:882–887

    Article  CAS  Google Scholar 

  4. Wang J-L, He L-N, Dou X-Y, Wu F (2009) Aust J Chem 62:917–920

    Article  CAS  Google Scholar 

  5. Arai M, Fujita S-I, Shirai M (2009) J Supercrit Fluids 47:351–356

    Article  CAS  Google Scholar 

  6. Donaldson ME, Draucker LC, Blasucci V, Liotta CL, Eckert CA (2009) Fluid Phase Equilib 277:81–86

    Article  CAS  Google Scholar 

  7. Blasucci VM, Husain ZA, Fadhel AZ, Donaldson ME, Vyhmeister E, Pollet P, Liotta CL, Eckert CA (2010) J Phys Chem A 114:3932–3938

    Article  CAS  Google Scholar 

  8. Weidner E, Wiesmet V, Knez Ž, Škerget M (1997) J Supercrit Fluids 10:139–147

    Article  CAS  Google Scholar 

  9. Lopes JA, Gourgouillon D, Pereira PJ, Ramos AM, da Ponte MN (2000) J Supercrit Fluids 16:261-267

    Article  CAS  Google Scholar 

  10. Wiesmet V, Weidner E, Behme S, Sadowski G, Arlt W (2000) J Supercrit Fluids 17:1–12

    Article  CAS  Google Scholar 

  11. Guadagno T, Kazarian SG (2004) J Phys Chem B 108:13995–13999

    Article  CAS  Google Scholar 

  12. Stubbs JM (2011) Fluid Phase Equilib 305:76–82

    Article  CAS  Google Scholar 

  13. Li X, Hou M, Han B, Wang X, Yang G, Zou L (2008) J Chem Eng Data 53:1216–1219

    Article  CAS  Google Scholar 

  14. Martin MG, Siepmann JI (1998) J Phys Chem B 102:2569–2577

    Article  CAS  Google Scholar 

  15. Wick CD, Martin MG, Siepmann JI (2000) J Phys Chem B 104:8008–8016

    Article  CAS  Google Scholar 

  16. Stubbs JM, Potoff JJ, Siepmann JI (2004) J Phys Chem B 108:17596–17605

    Article  CAS  Google Scholar 

  17. Potoff JJ, Siepmann JI (2001) AIChE J 47:1676–1682

    Article  CAS  Google Scholar 

  18. Panagiotopoulos AZ (1987) Mol Phys 61:813–826

    Article  CAS  Google Scholar 

  19. Panagiotopoulos AZ, Quirke N, Stapleton M, Tildesley DJ (1988) Mol Phys 63:527–545

    Article  CAS  Google Scholar 

  20. Smit B, de Smedt P, Frenkel D (1989) Mol Phys 68:931–950

    Article  CAS  Google Scholar 

  21. Allen MP, Tildesley DJ (1987) Computer simulations of liquids. Oxford University Press, Oxford

    Google Scholar 

  22. Siepmann JI (1990) Mol Phys 70:1145–1158

    Article  CAS  Google Scholar 

  23. Siepmann JI, Frenkel D (1992) Mol Phys 75:59–70

    Article  CAS  Google Scholar 

  24. Frenkel D, Mooij GCAM, Smit B (1992) J Phys Condens Matter 4:3053–3076

    Article  Google Scholar 

  25. de Pablo JJ, Laso M, Suter UW (1992) J Chem Phys 96:2395–2403

    Article  Google Scholar 

  26. Wick CD, Siepmann JI (2000) Macromolecules 33:7207–7218

    Article  CAS  Google Scholar 

  27. Prausnitz JM, Lichtenthaler RN, Gomes de Azevedo E (1999) Molecular thermodynamics of fluid-phase equilibria, 3rd edn. Prentice Hall, Englewood Cliffs, NJ

    Google Scholar 

  28. Anderson KE, Siepmann JI (2008) J Phys Chem B 112:11374–11380

    Article  CAS  Google Scholar 

  29. Pasquali I, Comi L, Pucciarelli F, Bettini R (2008) Int J Pharm 356:76–81

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the Maine Space Grant Consortium Undergraduate Scholarship Program and the University of New England’s College of Arts and Sciences Dean’s office for support, J. Bellan and J.I. Siepmann for discussion, and the University of Minnesota Supercomputing Institute where the calculations were partially carried out.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John M. Stubbs.

Additional information

Published as part of the special collection of articles derived from the conference: Foundations of Molecular Modeling and Simulation 2012.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huber, M.T., Stubbs, J.M. The influence of carbon dioxide cosolvent on solubility in poly(ethylene glycol). Theor Chem Acc 131, 1276 (2012). https://doi.org/10.1007/s00214-012-1276-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-012-1276-x

Keywords

Navigation