Skip to main content
Log in

Density functional study of substituted (–SH, –S, –OH, –Cl) hydrated ions of Hg2+

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

The electronic structure of Hg(II) ions, [Hg(L) n (H2O) m ]q (L = HO, Cl, HS, S2−) has been studied. Geometries were fully optimized. The B3LYP and PBE functionals give structures in good agreement with available experimental data. Calculated stretching frequencies generally correlate well with bond lengths. The role of the water molecule(s) in the solvated Hg(II) complexes has been investigated. The solvent can act as nucleophile, as hydrogen bond acceptor or as a spectator. The trans-effect results in lengthening of the Hg–L bond length. It can be understood as a competition between ligands in trans positions for the ability to donate their electron density to the 6s AO of Hg(II). The effect of the presence of water molecules on the Hg–L bond length depends on whether or not the water molecules form a direct coordination bond with Hg(II); it will not guarantee an increase in the stability of the complexes. The interaction energy, which represents the interaction between Hg(II) and ligand L and excludes all other interactions, is nucleophilicity-dependent. The interaction energy and the strength of the ligand nucleophilicity follow the order: S2− > HS > HO > Cl > H2O. The charge transfer, ΔN, is an indication for the type and strength of the interaction between ligand and Hg(II). Increasing the positive and negative value of ΔN will decrease and increase the Hg(II) total NBO charge, respectively, while decreasing the electrophilicity of Hg(II) will decrease its charge and the charge transfer, ΔN.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Mason RP, Fitzgerald WF, Morel FMM (1994) Geochim Cosmochim Acta 58:3191

    Article  CAS  Google Scholar 

  2. Schroeder WH, Munthe J (1998) Atmos Environ 32:809

    Article  CAS  Google Scholar 

  3. Outridge PM, Macdonald RW, Wang F, Stern GA, Dastoor AP (2008) Environ Chem 5:89

    Article  CAS  Google Scholar 

  4. Fitzgerald WF, Lamborg CH, Hammerschmidt CR (2007) Chem Rev 107:641

    Article  CAS  Google Scholar 

  5. Henkel G, Krebs B (2004) Chem Rev 104:801

    Article  CAS  Google Scholar 

  6. Schroeder WH, Anlauf KG, Barrie LA, Lu JY, Steffen A, Schneeberger DR, Berg T (1998) Nature 394:331

    Article  CAS  Google Scholar 

  7. Lu JY, Schroeder WH, Barrie LA, Steffen A, Welch HE, Martin K, Lockhart L, Hunt RV, Boila G, Richter A (2001) Geophys Res Lett 28:3219

    Article  CAS  Google Scholar 

  8. Steffen A, Schroeder W, Bottenheim J, Narayan J, Fuentes JD (2002) Atmos Environ 36:2653

    Article  CAS  Google Scholar 

  9. Pearson RG (1963) J Am Chem Soc 85:3533

    Article  CAS  Google Scholar 

  10. Parr RG, Pearson RG (1983) J Am Chem Soc 105:7512

    Article  CAS  Google Scholar 

  11. Sigel H, McCormic DB (1970) Acc Chem Res 3:201

    Article  CAS  Google Scholar 

  12. Martin RB (1987) J Chem Educ 64:402

    Article  CAS  Google Scholar 

  13. Glusker JP (1991) Adv Protein Chem 42:1

    Article  CAS  Google Scholar 

  14. Rulisek L, Vondrasek J (1998) J Inorg Biochem 71:115

    Article  CAS  Google Scholar 

  15. Vedani A, Huhta DW (1990) J Am Chem Soc 112:4759

    Article  CAS  Google Scholar 

  16. Comba P, Hambley TW, Strohle M (1995) Helv Chim Acta 78:2042

    Article  CAS  Google Scholar 

  17. Comba P (1999) Coord Chem Rev 185–6:81

    Article  Google Scholar 

  18. Ziegler T (1991) Chem Rev 91:651

    Article  CAS  Google Scholar 

  19. Ziegler T (1995) Can J Chem-Rev Can Chim 73:743

    Article  CAS  Google Scholar 

  20. Veillard A (1991) Chem Rev 91:743

    Article  CAS  Google Scholar 

  21. Cory MG, Zerner MC (1991) Chem Rev 91:813

    Article  CAS  Google Scholar 

  22. Deeth RJ (1995) Computational modeling of transition-metal centers. In: Coordination chemistry, structure and bonding, vol 82. Springer, Berlin, pp 1–42

  23. Chermette H (1998) Coord Chem Rev 178:699

    Article  Google Scholar 

  24. Niu SQ, Hall MB (2000) Chem Rev 100:353

    Article  CAS  Google Scholar 

  25. Loew GH, Harris DL (2000) Chem Rev 100:407

    Article  CAS  Google Scholar 

  26. Siegbahn PEM, Blomberg MRA (2000) Chem Rev 100:421

    Article  CAS  Google Scholar 

  27. Frenking G, Fröhlich N (2000) Chem Rev 100:717

    Article  CAS  Google Scholar 

  28. Hush NS, Reimers JR (2000) Chem Rev 100:775

    Article  CAS  Google Scholar 

  29. Filatov M, Cremer D (2004) Chem Phys Chem 5:1547

    Article  CAS  Google Scholar 

  30. Cremer D, Kraka E, Filatov M (2008) Chem Phys Chem 9:2510

    Article  CAS  Google Scholar 

  31. Shepler BC, Balabanov NB, Peterson KAJ (2007) Chem Phys 127:164304

    Google Scholar 

  32. Shepler BC, Wright AD, Balabanov NB, Peterson KA (2007) J Phys Chem A 111:11342

    Article  CAS  Google Scholar 

  33. Peterson KA, Shepler BC, Singleton JM (2007) Mol Phys 105:1139

    Article  CAS  Google Scholar 

  34. Balabanov NB, Peterson KA (2004) J Chem Phys 120:6585

    Article  CAS  Google Scholar 

  35. Shepler BC, Balabanov NB, Peterson KA (2005) J Phys Chem A 109:10363

    Article  CAS  Google Scholar 

  36. Balabanov NB, Shepler BC, Peterson KA (2005) J Phys Chem A 109:8765

    Article  CAS  Google Scholar 

  37. Balabanov NB, Peterson KA (2003) J Chem Phys 119:12271

    Article  CAS  Google Scholar 

  38. Shepler BC, Peterson KA (2003) J Phys Chem A 107:1783

    Article  CAS  Google Scholar 

  39. Balabanov NB, Peterson KA (2003) J Phys Chem A 107:7465

    Article  CAS  Google Scholar 

  40. Tossell JA (2006) J Phys Chem A 110:2571

    Article  CAS  Google Scholar 

  41. Tossell JA (2003) J Phys Chem A 107:7804

    Article  CAS  Google Scholar 

  42. Tossell JA (2001) J Phys Chem A 105:935

    Article  CAS  Google Scholar 

  43. Tossell JA (1999) Am Miner 84:877

    CAS  Google Scholar 

  44. Tossell JA (1998) J Phys Chem A 102:3587

    Article  CAS  Google Scholar 

  45. Wiederhold JG, Cramer CJ, Daniel K, Infante I, Bourdon B, Kretzschmar R (2010) Environ Sci Technol 44:4191. doi:10.1021/es100205t

    Article  CAS  Google Scholar 

  46. Schauble EA (2007) Geochim Cosmochim Acta 71:2170

    Article  CAS  Google Scholar 

  47. Frisch MJT, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery Jr., JA, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2003) Gaussian 03, revision B.05; Gaussian, Inc.; Pittsburgh PA

  48. Becke AD (1993) J Chem Phys 98:5648

    Article  CAS  Google Scholar 

  49. Becke AD (1988) Phys Rev A 38:3098

    Article  CAS  Google Scholar 

  50. Lee CT, Yang WT, Parr RG (1988) Phys Rev B 37:785

    Article  CAS  Google Scholar 

  51. Vosko SH, Wilk L, Nusair M (1980) Can J Phys 58:1200

    Article  CAS  Google Scholar 

  52. Fuentealba P, Preuss H, Stoll H, von Szentpaly L (1982) Chem Phys Lett 89:418

    Article  CAS  Google Scholar 

  53. te Velde G, Bickelhaupt FM, Baerends EJ, Guerra CF, Van Gisbergen SJA, Snijders JG, Ziegler T (2001) J Comput Chem 22:931

    Article  Google Scholar 

  54. van Lenthe E, Ehlers A, Baerends EJ (1999) J Chem Phys 110:8943

    Article  Google Scholar 

  55. Ziegler T, Rauk A (1979) Inorg Chem 18:1755

    Article  CAS  Google Scholar 

  56. Perdew JP (1986) Phys Rev B 33:8822

    Article  Google Scholar 

  57. Baerends EJ, Ellis DE, Ros P (1973) Chem Phys 2:41

    Article  CAS  Google Scholar 

  58. Reed AE, Curtiss LA, Weinhold F (1988) Chem Rev 88:899

    Article  CAS  Google Scholar 

  59. Parr RG, Yang W (1989) Density functional theory of atoms and molecules. Oxford University Press, Oxford

    Google Scholar 

  60. Parr RG, Donnelly RA, Levy M, Palke WE (1978) J Chem Phys 68:3801

    Article  CAS  Google Scholar 

  61. Malone JG (1933) J Chem Phys 1:197

    Article  CAS  Google Scholar 

  62. Parr RG, von Szentpaly L, Liu SB (1999) J Am Chem Soc 121:1922

    Article  CAS  Google Scholar 

  63. Ohtaki H, Radnai T (1993) Chem Rev 93:1157

    Article  CAS  Google Scholar 

  64. Subramanian V, Seff K (1980) Acta Crystallogr Sect B-Struct Commun 36:2132

    Article  Google Scholar 

  65. Liao MS, Zhang QE, Schwarz WHE (1995) Inorg Chem 34:5597

    Article  CAS  Google Scholar 

  66. Schwerdtfeger P, Boyd PDW, Brienne S, McFeaters JS, Dolg M, Liao MS, Schwarz WHE (1993) Inorg Chim Acta 213:233

    Article  CAS  Google Scholar 

  67. Kaupp M, von Schnering HG (1994) Inorg Chem 33:4179

    Article  CAS  Google Scholar 

  68. Stromberg D, Stromberg A, Wahlgren U (1991) Water Air Soil Pollut 56:681

    Article  Google Scholar 

  69. Braune HK, Knock SZ (1933) Phys Chem Abt B 23:163

    Google Scholar 

  70. Gregg AHH, Hampson GC, Jenkins GI, Jones PLF, Sutton LE (1937) Trans Faraday Soc 33:852

    Google Scholar 

  71. Akishin PA, Spiridonov VP (1957) Kristallografiya 2:475

    CAS  Google Scholar 

  72. Maxwell LR, Mosley VM (1940) Phys Rev 57:21

  73. Deyanov PZ, Petrov KP, Ugarov VV, Shchedrin BM, Rambidi NG (1985) J Struct Chem 26:58

    Google Scholar 

  74. Kashiwabara K, Konaka S, Kimura M (1973) Bull Chem Soc Jpn 46:10

    Google Scholar 

  75. Soldan P, Lee EPF, Wright TG (2002) J Phys Chem A 106:8619

    Article  CAS  Google Scholar 

  76. Wang X, Andrews L (2005) Inorg Chem 44:108

  77. Göbbels D, Wickleder MS (2004) Acta crystallogr Sect EStruct Rep. Online 60:I40

    Google Scholar 

  78. Johansso G (1971) Acta Chem Scand 25:2799

    Article  Google Scholar 

  79. Schwarzenbach G, Widmer M (1963) Helv Chim Acta 46:2613

    Article  CAS  Google Scholar 

  80. Barnes HL, Romberger SN, Stembrok M (1967) Econ Geol 62:957

    Article  CAS  Google Scholar 

  81. Jay JA, Morel FMM, Hemond HF (2000) Environ Sci Technol 34:2196

    Article  CAS  Google Scholar 

  82. Barnes HL (1979) Solubilities of ore minerals, 2nd edn. Wiley, New York

    Google Scholar 

  83. Lennie AR, Charnock JM, Pattrick RAD (2003) Chem Geol 199:199

  84. http://srdata.nist.gov/cccbdb/

  85. Scott AP, Radom L (1996) J Phys Chem 100:16502

    Article  CAS  Google Scholar 

  86. Uehara H, Konno T. Izaki Y, Horiai K, Nakagawa K, Johns JWC (1994) Can J Phys 72:1145

    Google Scholar 

  87. Braune HE, GZ (1932) Phys Chem Abt B 19:303

  88. Clark RJHR, DM (1973) J Chem Soc Faraday Trans 2(69):1496

  89. Sponer HT, Rev E (1941) Mod Phys 13:75

    Article  CAS  Google Scholar 

  90. Aylett BJ (1973) Comprehensive inorganic chemistry. Pergamon Press, Elmsford

    Google Scholar 

  91. Jaque P, Marenich AV, Cramer CJ, Truhlar DG (2007) J Phys Chem C 111:5783

    Article  CAS  Google Scholar 

  92. Li X, Tu Y, Tian H, Agren H (2010) J Chem Phys 132

  93. Rulisek L, Havlas Z (2000) J Am Chem Soc 122:10428

    Article  CAS  Google Scholar 

  94. Schreckenbach G, Shamov GA (2010) Acc Chem Res 43:19

    Article  CAS  Google Scholar 

  95. Shamov GA, Schreckenbach G (2005) J Phys Chem A 109:10961. [Correction note: Shamov GA, Schreckenbach G (2006) J Phys Chem A 110:12072]

  96. Keutsch FN, Cruzan JD, Saykally RJ (2003) Chem Rev 103:2533

    Article  CAS  Google Scholar 

  97. Mas EM, Bukowski R, Szalewicz K (2003) J Chem Phys 118:4386

    Article  CAS  Google Scholar 

  98. Xantheas SS (2000) Chem Phys 258:225

    Article  CAS  Google Scholar 

  99. Boys SF, Bernardi F (1970) Mol Phys 19:553

    Article  CAS  Google Scholar 

  100. Hartmann M, Clark T, van Eldik R (1997) J Am Chem Soc 119:7843

    Article  CAS  Google Scholar 

  101. Stumm W, Morgan JJ (1996) Aquatic chemistry. Chemical equilibria and rates in natural waters. Wiley-Interscience, New York

    Google Scholar 

  102. Luther GW III, Tsamakis E (1989) Mar Chem 127:165

    Article  Google Scholar 

  103. Pearson RG (1997) Chemical hardness. WILEY-VCH, Weinheim

    Book  Google Scholar 

  104. Ayers PW, Parr RG (2010) J Am Chem Soc 2000:122

    Google Scholar 

  105. Chattaraj PK, Perez P, Zevallos J, Toro-Labbe A (2001) J Phys Chem A 105:4272

    Article  CAS  Google Scholar 

  106. Perez P, Toro-Labbe A, Contreras R (2001) J Am Chem Soc 123:5527

    Article  CAS  Google Scholar 

  107. Safi B, Choho K, Geerlings P (2001) J Phys Chem A 105:591

    Article  CAS  Google Scholar 

  108. Cox H, Stace AJ (2004) J Am Chem Soc 126:3939

    Article  CAS  Google Scholar 

  109. Solda PL, EPF, Wright TG (2002) J Phys Chem A 106:8619

  110. Klopmann G (1968) J Am Chem Soc 90:223

    Article  Google Scholar 

Download references

Acknowledgments

We acknowledge funding from the Natural Sciences and Engineering Council of Canada (NSERC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Georg Schreckenbach.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Afaneh, A.T., Schreckenbach, G. & Wang, F. Density functional study of substituted (–SH, –S, –OH, –Cl) hydrated ions of Hg2+ . Theor Chem Acc 131, 1174 (2012). https://doi.org/10.1007/s00214-012-1174-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-012-1174-2

Keywords

Navigation