Skip to main content
Log in

Modulation of the work function of silicon nanowire by chemical surface passivation: a DFT study

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

The electronic structures and work functions of hydrogen (H−), fluorine (F−), and hydroxyl (OH−) passivated silicon nanowires (SiNWs) are evaluated by DFT calculations. We reveal that the work function of SiNW depends strongly on the nature of passivating functional groups, the percentage of passivation and the surface passivated. In particular, a trend of work functions: F-SiNW > H-SiNW > OH-SiNW, is obtained. Taking H-SiNW as the reference, the increased work function in F-SiNW is attributed to the electron withdrawing effect from highly electronegative F atom. In contrast, although O atom is also highly electronegative, for OH-SiNW, such effect is countered by the resonance effect in which electron is donated back to the SiNW surfaces, resulting in reduced work function. The extent of the increment or reduction is proportional to the percentage coverage of the passivating chemicals. Moreover, the work function changes more significantly when the di-substituted (100) surfaces are passivated than that of the mono-substituted (110) surfaces. Consequently, OH-SiNW shows conjugate-liked Si–Si bonds at both the surfaces and the core. The results indicate that the work function of SiNW can be fine tuned by using selected chemical on selected surface with known amount of coverage for customizing purpose.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Morales AM, Lieber CM (1998) Science 279:208

    Article  CAS  Google Scholar 

  2. Holmes JD, Johnston KP, Doty RC, Korgel BA (2000) Science 287:1471

    Article  CAS  Google Scholar 

  3. Cui Y, Lauhon LJ, Gudiksen MS, Wang J, Lieber CM (2001) Appl Phys Lett 78:2214

    Article  CAS  Google Scholar 

  4. Zhang RQ, Lifshitz Y, Lee ST (2003) Adv Mater 15:635

    Article  CAS  Google Scholar 

  5. Wu Y, Cui Y, Huynh L, Barrelet CJ, Bell DC, Lieber CM (2004) Nano Lett 4:433

    Article  CAS  Google Scholar 

  6. Read AJ, Needs RJ, Nash KJ, Canham LT, Calcott PDJ, Qteish A (1992) Phys Rev Lett 69:1232

    Article  CAS  Google Scholar 

  7. Zhao X, Wei CM, Yang L, Chou MY (2004) Phys Rev Lett 92:236805

    Article  Google Scholar 

  8. Zhang RQ, Lifshitz Y, Ma DDD, Zhao YL, Frauenheim Th, Lee ST, Tong SY (2005) J Chem Phys 123:144703

    Article  CAS  Google Scholar 

  9. Ng MF, Zhou LP, Yang SW, Sim LY, Tan VBC, Wu P (2007) Phys Rev B 76:155435

    Article  Google Scholar 

  10. Ng MF, Shen L, Zhou LP, Yang SW, Tan VBC (2008) Nano Lett 8:3662

    Article  CAS  Google Scholar 

  11. Svizhenko A, Leu PW, Cho K (2007) Phys Rev B 75:125417

    Article  Google Scholar 

  12. Leu PW, Svizhenko A, Cho K (2008) Phys Rev B 77:235305

    Article  Google Scholar 

  13. Sorokin PB, Avramov PV, Kvashnin AG, Kvashnin DG, Ovchinnikov SG, Fedorov AS (2008) Phys Rev B 77:235417

    Article  Google Scholar 

  14. Leu PW, Shan B, Cho K (2006) Phys Rev B 73:195320

    Article  Google Scholar 

  15. Vo T, Williamson AJ, Galli G (2006) Phys Rev B 74:045116

    Article  Google Scholar 

  16. Cui Y, Wei Q, Park H, Lieber CM (2001) Science 293:1289

    Article  CAS  Google Scholar 

  17. Hahm J, Lieber CM (2004) Nano Lett 4:51

    Article  CAS  Google Scholar 

  18. Cui Y, Lieber CM (2001) Science 291:851

    Article  CAS  Google Scholar 

  19. Tian B, Zheng X, Kempa TJ, Fang Y, Yu N, Yu G, Huang J, Lieber CM (2007) Nature 449:885

    Article  CAS  Google Scholar 

  20. Gudiksen MS, Lauhon LJ, Wang J, Smith DC, Lieber CM (2002) Nature 415:617

    Article  CAS  Google Scholar 

  21. Sze SM, Ng KK (2006) Physics of semiconductor devices. Wiley & Sons, Inc, London

    Book  Google Scholar 

  22. Ma DDD, Lee CS, Au FCK, Tong SY, Lee ST (2003) Science 299:1874

    Article  CAS  Google Scholar 

  23. Perdew JP, Chevary JA, Vosko SH, Jackson KA, Pederson MR, Singh DJ, Fiolhais C (1992) Phys Rev B 46:6671

    Article  CAS  Google Scholar 

  24. Kresse G, Furthmüller J (1996) Comput Mat Sci 6:15

    Article  CAS  Google Scholar 

  25. Kresse G, Furthmüller J (1996) Phys Rev B 54:11169

    Article  CAS  Google Scholar 

  26. Blochl PE (1994) Phys Rev B 50:17953

    Article  Google Scholar 

  27. Ng MF, Teo MK, Lim KH, Zhou L, Sullivan MB, Yang SW (2008) Diam Relat Mater 17:2048

    Article  CAS  Google Scholar 

  28. Kokalj A (1999) J Mol Graph Model 17:176

    Article  CAS  Google Scholar 

  29. Bimberg D, Blachnik R, Cardona M, Dean PJ, Grave T, Harbeke G, Hübner K, Kaufmann U, Kress W, Madelung O, von Münch W, Rössler U, Schneider J, Schulz M, Skolnick (1982) In: Madelung O (ed) Physics of group IV elements and III-V compounds. Springer, New York

    Google Scholar 

  30. Cheng TC, Shieh J, Huang WJ, Yang MC, Cheng MH, Lin HM, Chang MN (2006) Appl Phys Lett 88:263118

    Article  Google Scholar 

  31. Aradi B, Ramos LE, Deák P, Köhler T, Bechstedt F, Zhang RQ, Frauenheim T (2007) Phys Rev B 76:035305

    Article  Google Scholar 

  32. Ponomareva I, Menon M, Srivastava D, Andriotis AN (2005) Phys Rev Lett 95:265502

    Article  Google Scholar 

  33. Nieskens DLS, Ferré DC, Niemantsverdriet JW (2005) Chem Phys Chem 6:1293

    CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge funding from MOE/AcRF RG 28/07.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kok Hwa Lim or Shuo-Wang Yang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 25 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ng, MF., Sim, L.Y., Da, H. et al. Modulation of the work function of silicon nanowire by chemical surface passivation: a DFT study. Theor Chem Acc 127, 689–695 (2010). https://doi.org/10.1007/s00214-010-0779-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00214-010-0779-6

Keywords

Navigation