Skip to main content
Log in

Free volume from molecular dynamics simulations and its relationships to the positron annihilation lifetime spectroscopy

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

The free volume micro-structural properties of propylene glycol obtained by means of molecular dynamics simulations have been investigated and compared with the experimental data from positron annihilation lifetime spectroscopy (PALS). The results are also compared to those recently obtained on glycerol. The bulk microstructures of the samples have been analyzed in the temperature range 100–350 K with a probe-based procedure for exploring the free volume cavities of the microstructures. The basic free volume property, i.e., mean cavity volume, is compared with the hole volume data from PALS. A comparison between calculated and experimental data suggests the existence of a threshold volume for the smallest cavity detectable by PALS, which may be ascribed to fast local motions of the matrix constituents. At high temperatures the cavity analysis reveals the formation of an infinite cavity, i.e., percolation phenomenon. The onset temperatures of the percolation process in propylene glycol and glycerol are found to be close to the characteristic PALS temperature \(T^{\rm L}_{\rm b2}\) , where a pronounced change in the PALS response occurs, as well as to the characteristic dynamic Schönhals temperature \(T^{\rm SCH}_{\rm B}\) , and Stickel’s temperature \(T^{\rm ST}_{\rm B}\) , marking a dramatic change in the primary α properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Donth E (2000). The Glass Transition. Springer, Berlin

    Google Scholar 

  2. Adichtchev S, Blochowicz T, Tschirwitz C, Novikov VN, Rössler EA (2003). Phys Rev E 68: 011504

    Article  CAS  Google Scholar 

  3. Stickel F, Fischer EW, Richert R (1996). J Chem. Phys 102: 6251

    Article  Google Scholar 

  4. Stickel F (1995) PhD Thesis, Shaker Verlag Aachen

  5. Schönhals A (2001). Europhys Lett 56: 815

    Article  Google Scholar 

  6. Goldstein M (1969). J Chem Phys 51: 3728

    Article  CAS  Google Scholar 

  7. Paluch M, Casalini R, Roland M (2003). Phys Rev. E 67: 021508

    Article  CAS  Google Scholar 

  8. Casalini R, Ngai KL, Roland CM (2003). Phys Rev B 68: 014201

    Article  CAS  Google Scholar 

  9. Bartoš J, Šauša O, Krištiak J, Blochowicz T, Rössler E (2001). J Phys Cond Matt 13: 11473

    Article  Google Scholar 

  10. Ngai KL, Bao LR, Yee AF, Soles ChL Yee (2001). Phys Rev Lett 87: 215901

    Article  CAS  Google Scholar 

  11. Bartoš J, Šauša O, Bandžuch P, Zrubcová J, Krištiak J, Non-Cryst J (2002). Solids 307–310: 417

    Google Scholar 

  12. Bendler JT, Fontanella JJ, Shlesinger MF, Bartoš J, Šauša O, Krištiak J (2005). Phys Rev E 71: 0315089

    Article  CAS  Google Scholar 

  13. Račko D, Chelli R, Cardini G, Bartoš J, Califano S (2005). Eur Phys J D 32: 289

    Article  CAS  Google Scholar 

  14. Procacci P, Darden TA, Paci E, Marchi M (1997). J Comput Chem 18: 1848

    Article  CAS  Google Scholar 

  15. CornellWD, Cieplak P, BaylyCI, Gould IR, Merz KM, Jr., Ferguson DM, Spellmeyer DC, Fox T, Caldwell JW, Kollman PA (1995) J Am Chem Soc 117:5179

    Article  CAS  Google Scholar 

  16. Chelli R, Procacci P, Cardini G, Della Valle RG, Califano S (1999) Phys Chem Chem Phys 1:871 (The σ parameters of the Lennard-Jones potential reported in Table 1 are wrong. The correct values are: 3.4, 3.0665 and 2.4713 Å for the atoms C, O and non-hydroxy H, respectively)

  17. Andersen HC (1980). J Chem Phys 72: 2384

    Article  CAS  Google Scholar 

  18. Hoover WG (1985) Phys Rev A 31:1695; Hoover WG (1986) Phys Rev A 34:2499

  19. Kovacs AJ (1964). Fortschr Hochpolym-Forsch 3: 394

    CAS  Google Scholar 

  20. Parks GS, Huffman HM (1927). J Chem Phys 31: 184

    Google Scholar 

  21. Beiner M, Huth H, Schröter K (2001). J Noncryst Sol 279: 126

    Article  CAS  Google Scholar 

  22. Sastry S, Truskett TM, Debenedetti G, Torquato S, Stillinger FH (1998). Mol Phys 95: 289

    Article  CAS  Google Scholar 

  23. Tao SJ (1972). J Chem Phys 56: 5499

    Article  CAS  Google Scholar 

  24. Eldrup M, Lightbody D, Sherwood JN (1981). Chem Phys 63: 51

    Article  CAS  Google Scholar 

  25. Nakanishi H, Wang SJ, Jean YC (1988) In: Sharma SC (ed) Positron annihilation studies of fluids. World Scientific, Singapore p 292

  26. Bartoš J, Šauša O, Krištiak J (in press)

  27. Bartoš J, Šauša O, Račko D, Krištiak J, Fontanella JJ (2005). J Noncryst Solids 351: 2599

    Article  CAS  Google Scholar 

  28. Bartoš J, Račko D, Šauša O, Krištiak J (2007) Positron annihilation lifetime spectroscopy and atomistic modeling—effective tools for the disordered condensed system characterization, ARW NATO Series. Springer, Berlin, p 110

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Riccardo Chelli.

Electronic Supplementary Material

Below is the Electronic Supplementary material.

214_2007_283_MOESM1_ESM.pdf

Rights and permissions

Reprints and permissions

About this article

Cite this article

Račko, D., Chelli, R., Cardini, G. et al. Free volume from molecular dynamics simulations and its relationships to the positron annihilation lifetime spectroscopy. Theor Chem Account 118, 443–448 (2007). https://doi.org/10.1007/s00214-007-0283-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00214-007-0283-9

Navigation