Skip to main content
Log in

Role of early environmental enrichment on the social dominance tube test at adulthood in the rat

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

Environmental enrichment (EE) could influence brain plasticity and behavior in rodents. Whether the early EE may predispose individuals to a particular social hierarchy in the social dominance tube test (SDTT) at adulthood is still unknown.

Objective

The present study directly investigated the influence of EE on competitive success in the SDTT among adult rats.

Methods

Male rats were maintained in EE from postnatal days 21 to 35. Social dominance behavior was determined by SDTT, competitive food foraging test, and mate preference test at adulthood. IBA-1 expression in the hypothalamus was examined using immunohistochemistry and western blot.

Results

EE rats were prone to become submissive during a social encounter with standard environment (SE) rats in the SDTT. No difference was found in food foraging in the competitive food foraging test between SE and EE rats. Male EE rats were more attractive than the SE to the female rats in the mate preference test. IBA-1 expression was found to be decreased in the hypothalamus of EE rats compared to SE group. Infusion of a microglia inhibitor reduced percentage of forward in SE rats in the SDTT. Infusion of DNA methyltransferase inhibitor prevented the development of subordinate status in EE rats and restored the expression of IBA-1 in the hypothalamus.

Conclusions

The results suggest that early EE did not lead to reduced social hierarchy in the male rat. However, EE caused a reduction in the percentage of forward in the SDTT, which might be associated with reduced number of microglia in the hypothalamus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Akers KG, Yang Z, DelVecchio DP, Reeb BC, Romeo RD, McEwen BS, Tang AC (2008) Social competitiveness and plasticity of neuroendocrine function in old age: influence of neonatal novelty exposure and maternal care reliability. PLoS One 3:e2840

    Article  PubMed  PubMed Central  Google Scholar 

  • Arai JA, Li S, Hartley DM, Feig LA (2009) Transgenerational rescue of a genetic defect in long-term potentiation and memory formation by juvenile enrichment. J Neurosci 29:1496–1502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Audet M-C, Mangano EN, Anisman H (2010) Behavior and pro-inflammatory cytokine variations among submissive and dominant mice engaged in aggressive encounters: moderation by corticosterone reactivity. Front Behav Neurosci 4:156

  • Barnum CJ, Blandino PJ, Deak T (2008) Social status modulates basal IL-1 concentrations in the hypothalamus of pair-housed rats and influences certain features of stress reactivity. Brain Behav Immun 22:517–527

    Article  CAS  PubMed  Google Scholar 

  • Bartolomucci A, Palanza P, Gaspani L, Limiroli E, Panerai AE, Ceresini G, Poli MD, Parmigiani S (2001) Social status in mice: behavioral, endocrine and immune changes are context dependent. Physiol Behav 73:401–410

    Article  CAS  PubMed  Google Scholar 

  • van den Berg WE, Lamballais S, Kushner SA (2015) Sex-specific mechanism of social hierarchy in mice. Neuropsychopharmacology 40:1364–1372

    Article  PubMed  Google Scholar 

  • Buchhold B, Mogoanta L, Suofu Y, Hamm A, Walker L, Kessler C, Popa-Wagner A (2007) Environmental enrichment improves functional and neuropathological indices following stroke in young and aged rats. Restor Neurol Neurosci 25:467–484

    CAS  PubMed  Google Scholar 

  • Cao WY, Xu Y, Luo YW, Zhong XL, Duan J, Wang XQ, Hu ZL, Li F, Dai RP, Luo XG, Zhang JY, Li CQ (2013) Activation of ERK1/2 is required for normal response of isosexual social interactions in male rats. Brain Res 1538:51–60

    Article  CAS  PubMed  Google Scholar 

  • Cao W, Duan J, Wang X, Zhong X, Hu Z, Huang F, Wang H, Zhang J, Li F, Zhang J, Luo X, Li CQ (2014) Early enriched environment induces an increased conversion of proBDNF to BDNF in the adult rat's hippocampus. Behav Brain Res 265:76–83

    Article  CAS  PubMed  Google Scholar 

  • Chitu V, Gokhan S, Nandi S, Mehler MF, Stanley ER (2016) Emerging roles for CSF-1 receptor and its ligands in the nervous system. Trends Neurosci 39:378–393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Crews D, Gore AC, Hsu TS, Dangleben NL, Spinetta M, Schallert T, Anway MD, Skinner MK (2007) Transgenerational epigenetic imprints on mate preference. Proc Natl Acad Sci U S A 104:5942–5946

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dai RP, Li CQ, Zhang JW, Li F, Shi XD, Zhang JY, Zhou XF (2011) Biphasic activation of extracellular signal-regulated kinase in anterior cingulate cortex distinctly regulates the development of pain-related anxiety and mechanical hypersensitivity in rats after incision. Anesthesiology 115:604–613

  • Elmore MR, Najafi AR, Koike MA, Dagher NN, Spangenberg EE, Rice RA, Kitazawa M, Matusow B, Nguyen H, West BL, Green KN (2014) Colony-stimulating factor 1 receptor signaling is necessary for microglia viability, unmasking a microglia progenitor cell in the adult brain. Neuron 82:380–397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Erny D, Hrabe DAA, Jaitin D, Wieghofer P, Staszewski O, David E, Keren-Shaul H, Mahlakoiv T, Jakobshagen K, Buch T, Schwierzeck V, Utermohlen O, Chun E, Garrett WS, McCoy KD, Diefenbach A, Staeheli P, Stecher B, Amit I, Prinz M (2015) Host microbiota constantly control maturation and function of microglia in the CNS. Nat Neurosci 18:965–977

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Filiano AJ, Martens LH, Young AH, Warmus BA, Zhou P, Diaz-Ramirez G, Jiao J, Zhang Z, Huang EJ, Gao FB, Farese RJ, Roberson ED (2013) Dissociation of frontotemporal dementia-related deficits and neuroinflammation in progranulin haploinsufficient mice. J Neurosci 33:5352–5361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garfield AS, Cowley M, Smith FM, Moorwood K, Stewart-Cox JE, Gilroy K, Baker S, Xia J, Dalley JW, Hurst LD, Wilkinson LS, Isles AR, Ward A (2011) Distinct physiological and behavioural functions for parental alleles of imprinted Grb10. Nature 469:534–538

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Greenberg GD, Howerton CL, Trainor BC (2014) Fighting in the home cage: agonistic encounters and effects on neurobiological markers within the social decision-making network of house mice (Mus musculus). Neurosci Lett 566:151–155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang-Xie LF, Liao HM, Chen CH, Chen YT, Ho SY, Lu DH, Lee LJ, Liou HH, Fu WM, Gau SS (2014) Autism-associated gene Dlgap2 mutant mice demonstrate exacerbated aggressive behaviors and orbitofrontal cortex deficits. Mol Autism 5:32

    Article  PubMed  PubMed Central  Google Scholar 

  • Kato TA, Watabe M, Tsuboi S, Ishikawa K, Hashiya K, Monji A, Utsumi H, Kanba S (2012) Minocycline modulates human social decision-making: possible impact of microglia on personality-oriented social behaviors. PLoS One 7:e40461

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kettenmann H, Hanisch UK, Noda M, Verkhratsky A (2011) Physiology of microglia. Physiol Rev 91:461–553

    Article  CAS  PubMed  Google Scholar 

  • Lenz KM, Nugent BM, Haliyur R, McCarthy MM (2013) Microglia are essential to masculinization of brain and behavior. J Neurosci 33:2761–2772

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li F, Cao WY, Li MB, Xu Y, Zhang JW, Zhang JY, Luo XG, Dai RP, Zhou XF, Li CQ (2012) A simple method for detection of food foraging behavior in the rat: involvement of NMDA and dopamine receptors in the behavior. Neuroscience 205:73–80

    Article  CAS  PubMed  Google Scholar 

  • Li S, Jin M, Zhang D, Yang T, Koeglsperger T, Fu H, Selkoe DJ (2013) Environmental novelty activates beta2-adrenergic signaling to prevent the impairment of hippocampal LTP by Abeta oligomers. Neuron 77:929–941

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li CQ, Luo YW, Bi FF, Cui TT, Song L, Cao WY, Zhang JY, Li F, Xu JM, Hao W, Xing XW, Zhou FH, Zhou XF, Dai RP (2014) Development of anxiety-like behavior via hippocampal IGF-2 signaling in the offspring of parental morphine exposure: effect of enriched environment. Neuropsychopharmacology 39:2777–2787

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lores-Arnaiz S, Bustamante J, Arismendi M, Vilas S, Paglia N, Basso N, Capani F, Coirini H, Costa JJ, Arnaiz MR (2006) Extensive enriched environments protect old rats from the aging dependent impairment of spatial cognition, synaptic plasticity and nitric oxide production. Behav Brain Res 169:294–302

    Article  CAS  PubMed  Google Scholar 

  • MacDonald JL, Roskams AJ (2009) Epigenetic regulation of nervous system development by DNA methylation and histone deacetylation. Prog Neurobiol 88:170–183

    Article  CAS  PubMed  Google Scholar 

  • McQuaid RJ, Audet MC, Jacobson-Pick S, Anisman H (2013) Environmental enrichment influences brain cytokine variations elicited by social defeat in mice. Psychoneuroendocrinology 38:987–996

    Article  CAS  PubMed  Google Scholar 

  • Miller LS, Colella B, Mikulis D, Maller J, Green RE (2013) Environmental enrichment may protect against hippocampal atrophy in the chronic stages of traumatic brain injury. Front Hum Neurosci 7:506

    PubMed  PubMed Central  Google Scholar 

  • Mitra R, Sapolsky RM (2012) Short-term enrichment makes male rats more attractive, more defensive and alters hypothalamic neurons. PLoS One 7:e36092

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moretti P, Bouwknecht JA, Teague R, Paylor R, Zoghbi HY (2005) Abnormalities of social interactions and home-cage behavior in a mouse model of Rett syndrome. Hum Mol Genet 14:205–220

    Article  CAS  PubMed  Google Scholar 

  • Nithianantharajah J, Hannan AJ (2006) Enriched environments, experience-dependent plasticity and disorders of the nervous system. Nat Rev Neurosci 7:697–709

    Article  CAS  PubMed  Google Scholar 

  • Patel S, Player MR (2009) Colony-stimulating factor-1 receptor inhibitors for the treatment of cancer and inflammatory disease. Curr Top Med Chem 9:599–610

    Article  CAS  PubMed  Google Scholar 

  • Pearse DD, Hughes ZA (2016) PDE4B as a microglia target to reduce neuroinflammation. Glia 64:1698–1709

    Article  PubMed  Google Scholar 

  • Pietropaolo S, Branchi I, Cirulli F, Chiarotti F, Aloe L, Alleva E (2004) Long-term effects of the periadolescent environment on exploratory activity and aggressive behaviour in mice: social versus physical enrichment. Physiol Behav 81:443–453

    Article  CAS  PubMed  Google Scholar 

  • Rodriguiz RM, Chu R, Caron MG, Wetsel WC (2004) Aberrant responses in social interaction of dopamine transporter knockout mice. Behav Brain Res 148:185–198

    Article  CAS  PubMed  Google Scholar 

  • Sales AJ, Biojone C, Terceti MS, Guimaraes FS, Gomes MV, Joca SR (2011) Antidepressant-like effect induced by systemic and intra-hippocampal administration of DNA methylation inhibitors. Br J Pharmacol 164:1711–1721

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sapolsky RM (2005) The influence of social hierarchy on primate health. Science 308:648–652

    Article  CAS  PubMed  Google Scholar 

  • Shahbazian M, Young J, Yuva-Paylor L, Spencer C, Antalffy B, Noebels J, Armstrong D, Paylor R, Zoghbi H (2002) Mice with truncated MeCP2 recapitulate many Rett syndrome features and display hyperacetylation of histone H3. Neuron 35:243–254

    Article  CAS  PubMed  Google Scholar 

  • Spencer CM, Alekseyenko O, Serysheva E, Yuva-Paylor LA, Paylor R (2005) Altered anxiety-related and social behaviors in the Fmr1 knockout mouse model of fragile X syndrome. Genes Brain Behav 4:420–430

    Article  CAS  PubMed  Google Scholar 

  • Suarez-Roca H, Quintero L, Avila R, Medina S, De Freitas M, Cardenas R (2014) Central immune overactivation in the presence of reduced plasma corticosterone contributes to swim stress-induced hyperalgesia. Brain Res Bull 100:61–69

    Article  CAS  PubMed  Google Scholar 

  • Wang F, Zhu J, Zhu H, Zhang Q, Lin Z, Hu H (2011) Bidirectional control of social hierarchy by synaptic efficacy in medial prefrontal cortex. Science 334:693–697

    Article  CAS  PubMed  Google Scholar 

  • Wang F, Kessels HW, Hu H (2014) The mouse that roared: neural mechanisms of social hierarchy. Trends Neurosci 37:674–682

    Article  CAS  PubMed  Google Scholar 

  • Watabe M, Kato TA, Monji A, Horikawa H, Kanba S (2012) Does minocycline, an antibiotic with inhibitory effects on microglial activation, sharpen a sense of trust in social interaction? Psychopharmacology 220:551–557

    Article  CAS  PubMed  Google Scholar 

  • Yang CR, Bai YY, Ruan CS, Zhou HF, Liu D, Wang XF, Shen LJ, Zheng HY, Zhou XF (2015) Enhanced aggressive behaviour in a mouse model of depression. Neurotox Res 27:129–142

    Article  CAS  PubMed  Google Scholar 

  • Zhan Y, Paolicelli RC, Sforazzini F, Weinhard L, Bolasco G, Pagani F, Vyssotski AL, Bifone A, Gozzi A, Ragozzino D, Gross CT (2014) Deficient neuron-microglia signaling results in impaired functional brain connectivity and social behavior. Nat Neurosci 17:400–406

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Natural Science Foundation of China (31371212 to Chang-Qi Li, 81471372 to Fang Li) and the Graduate Research and Innovation Projects of Central South University (2016zzts116 to Zhao-Lan Hu).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Fang Li or Chang-Qi Li.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Electronic supplementary material

ESM 1

(DOC 49 kb).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, WY., Hu, ZL., Xu, Y. et al. Role of early environmental enrichment on the social dominance tube test at adulthood in the rat. Psychopharmacology 234, 3321–3334 (2017). https://doi.org/10.1007/s00213-017-4717-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-017-4717-3

Keywords

Navigation