Skip to main content

Advertisement

Log in

Abnormal response to methylphenidate across multiple fMRI procedures in cocaine use disorder: feasibility study

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

The indirect dopamine agonist methylphenidate remediates cognitive deficits in psychopathology, but the individual characteristics that determine its effects on the brain are not known.

Objectives

We aimed to determine whether targeted dopaminergically modulated traits and individual differences could predict neural response to methylphenidate across multiple functional magnetic resonance imaging (fMRI) procedures.

Methods

We combined neural measures from three separate procedures (two inhibitory control tasks differing in their degree of emotional salience and resting-state functional connectivity) during methylphenidate (20 mg oral, versus randomized and counterbalanced placebo) and correlated these aggregated responses with cocaine use disorder diagnosis (22 cocaine abusers, 21 controls), symptoms of attention deficit hyperactivity disorder, and working memory capacity.

Results

Cocaine abusers, relative to controls, had a lower response in the dorsolateral prefrontal cortex to methylphenidate across all three procedures, driven by responses to the two inhibitory control tasks; reduced methylphenidate fMRI response in this region further correlated with more frequent cocaine use.

Conclusions

Cocaine abuse (and its frequency), associated with lower tonic dopamine levels, correlated with a reduction in activation to methylphenidate (versus placebo). These initial results provide feasibility to the idea that multimodal fMRI tasks can be meaningfully aggregated, and that these aggregated procedures show a common disruption in addiction in a highly anticipated region relevant to cognitive control. Results also suggest that drug use frequency may represent an important modulatory variable in interpreting the efficacy of pharmacologically enhanced cognitive interventions in addiction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Beck AT, Steer RA, Brown GK (1996) Beck Depression Inventory manual, 2nd edn. The Psychological Corporation, San Antonio

    Google Scholar 

  • Berridge KC (2007) The debate over dopamine’s role in reward: the case for incentive salience. Psychopharmacology 191:391–431

    Article  CAS  PubMed  Google Scholar 

  • Brewer JA, Worhunsky PD, Carroll KM, Rounsaville BJ, Potenza MN (2008) Pretreatment brain activation during stroop task is associated with outcomes in cocaine-dependent patients. Biol Psychiatry 64:998–1004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brunoni AR, Vanderhasselt MA (2014) Working memory improvement with non-invasive brain stimulation of the dorsolateral prefrontal cortex: a systematic review and meta-analysis. Brain Cogn 86:1–9

    Article  PubMed  Google Scholar 

  • Buhler M, Vollstadt-Klein S, Klemen J, Smolka MN (2008) Does erotic stimulus presentation design affect brain activation patterns? Event-related vs. blocked fMRI designs. Behav Brain Funct 4:30

    Article  PubMed  PubMed Central  Google Scholar 

  • Bush G, Spencer TJ, Holmes J, Shin LM, Valera EM, Seidman LJ, Makris N, Surman C, Aleardi M, Mick E, Biederman J (2008) Functional magnetic resonance imaging of methylphenidate and placebo in attention-deficit/hyperactivity disorder during the multi-source interference task. Arch Gen Psychiatry 65:102–14

    Article  CAS  PubMed  Google Scholar 

  • Camchong J, MacDonald AW 3rd, Nelson B, Bell C, Mueller BA, Specker S, Lim KO (2011) Frontal hyperconnectivity related to discounting and reversal learning in cocaine subjects. Biol Psychiatry 69:1117–23

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chee MW, Venkatraman V, Westphal C, Siong SC (2003) Comparison of block and event-related fMRI designs in evaluating the word-frequency effect. Hum Brain Mapp 18:186–93

    Article  PubMed  Google Scholar 

  • Conners CK, Erhardt D, Sparrow EP (1999) Conners’ Adult ADHD Rating Scales (CAARS): technical manual. Multi-Health, North Tonawanda, NY

    Google Scholar 

  • Cools R, Miyakawa A, Sheridan M, D’Esposito M (2010) Enhanced frontal function in Parkinson’s disease. Brain 133:225–33

    Article  CAS  PubMed  Google Scholar 

  • Cubillo A, Smith AB, Barrett N, Giampietro V, Brammer M, Simmons A, Rubia K (2014a) Drug-specific laterality effects on frontal lobe activation of atomoxetine and methylphenidate in attention deficit hyperactivity disorder boys during working memory. Psychol Med 44:633–46

    Article  CAS  PubMed  Google Scholar 

  • Cubillo A, Smith AB, Barrett N, Giampietro V, Brammer MJ, Simmons A, Rubia K (2014b) Shared and drug-specific effects of atomoxetine and methylphenidate on inhibitory brain dysfunction in medication-naive ADHD boys. Cereb Cortex 24:174–85

    Article  PubMed  Google Scholar 

  • D’Esposito M, Postle BR (2015) The cognitive neuroscience of working memory. Annu Rev Psychol 66:115–42

    Article  PubMed  Google Scholar 

  • Egner T, Etkin A, Gale S, Hirsch J (2008) Dissociable neural systems resolve conflict from emotional versus nonemotional distracters. Cereb Cortex 18:1475–84

    Article  PubMed  Google Scholar 

  • Farr OM, Zhang S, Hu S, Matuskey D, Abdelghany O, Malison RT, Li CS (2014) The effects of methylphenidate on resting-state striatal, thalamic and global functional connectivity in healthy adults. Int J Neuropsychopharmacol 17:1177–91

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gawin F, Riordan C, Kleber H (1985) Methylphenidate treatment of cocaine abusers without attention deficit disorder: a negative report. Am J Drug Alcohol Abuse 11:193–7

    Article  CAS  PubMed  Google Scholar 

  • Goldstein RZ, Volkow ND (2011) Dysfunction of the prefrontal cortex in addiction: neuroimaging findings and clinical implications. Nat Rev Neurosci 12:652–69

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goldstein RZ, Alia-Klein N, Tomasi D, Honorio Carrillo J, Maloney T, Woicik PA, Wang R, Telang F, Volkow ND (2009) Anterior cingulate cortex hypoactivations to an emotionally salient task in cocaine addiction. Proc Natl Acad Sci U S A 106:9453–9458

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goldstein RZ, Woicik PA, Maloney T, Tomasi D, Alia-Klein N, Shan J, Honorio J, Samaras D, Wang R, Telang F, Wang GJ, Volkow ND (2010) Oral methylphenidate normalizes cingulate activity in cocaine addiction during a salient cognitive task. Proc Natl Acad Sci U S A 107:16667–72

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grabowski J, Roache JD, Schmitz JM, Rhoades H, Creson D, Korszun A (1997) Replacement medication for cocaine dependence: methylphenidate. J Clin Psychopharmacol 17:485–8

    Article  CAS  PubMed  Google Scholar 

  • Hannestad J, Gallezot JD, Planeta-Wilson B, Lin SF, Williams WA, van Dyck CH, Malison RT, Carson RE, Ding YS (2010) Clinically relevant doses of methylphenidate significantly occupy norepinephrine transporters in humans in vivo. Biol Psychiatry 68:854–60

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Horvitz JC (2000) Mesolimbocortical and nigrostriatal dopamine responses to salient non-reward events. Neuroscience 96:651–6

    Article  CAS  PubMed  Google Scholar 

  • Jan RK, Lin JC, McLaren DG, Kirk IJ, Kydd RR, Russell BR (2014) The effects of methylphenidate on cognitive control in active methamphetamine dependence using functional magnetic resonance imaging. Front Psychiatry Front Res Found 5:20

    Google Scholar 

  • Kerns JG, Cohen JD, MacDonald AW 3rd, Cho RY, Stenger VA, Carter CS (2004) Anterior cingulate conflict monitoring and adjustments in control. Science 303:1023–6

    Article  CAS  PubMed  Google Scholar 

  • Kim YW, Shin JC, An YS (2009) Effects of methylphenidate on cerebral glucose metabolism in patients with impaired consciousness after acquired brain injury. Clin Neuropharmacol 32:335–9

    Article  CAS  PubMed  Google Scholar 

  • Kim J, Whyte J, Patel S, Europa E, Wang J, Coslett HB, Detre JA (2012) Methylphenidate modulates sustained attention and cortical activation in survivors of traumatic brain injury: a perfusion fMRI study. Psychopharmacology (Berl) 222:47–57

    Article  CAS  Google Scholar 

  • Konova AB, Moeller SJ, Tomasi D, Parvaz MA, Alia-Klein N, Volkow ND, Goldstein RZ (2012) Structural and behavioral correlates of abnormal encoding of money value in the sensorimotor striatum in cocaine addiction. Eur J Neurosci 36:2979–88

    Article  PubMed  PubMed Central  Google Scholar 

  • Konova AB, Moeller SJ, Tomasi D, Volkow ND, Goldstein RZ (2013) Effects of methylphenidate on resting-state functional connectivity of the mesocorticolimbic dopamine pathways in cocaine addiction. JAMA Psychiatry 70:857–68

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Konova AB, Moeller SJ, Tomasi D, Goldstein RZ (2015) Effects of chronic and acute stimulants on brain functional connectivity hubs. Brain Res 1628:147–56

    Article  CAS  PubMed  Google Scholar 

  • Konova AB, Moeller SJ, Parvaz MA, Frobose MI, Alia-Klein N, Goldstein RZ (2016) Converging effects of cocaine addiction and sex on neural responses to monetary rewards. Psychiatry Res 248:110–8

    Article  PubMed  Google Scholar 

  • Kuczenski R, Segal DS (1997) Effects of methylphenidate on extracellular dopamine, serotonin, and norepinephrine: comparison with amphetamine. J Neurochem 68:2032–7

    Article  CAS  PubMed  Google Scholar 

  • Leung HC, Skudlarski P, Gatenby JC, Peterson BS, Gore JC (2000) An event-related functional MRI study of the stroop color word interference task. Cereb Cortex 10:552–60

    Article  CAS  PubMed  Google Scholar 

  • Li CS, Morgan PT, Matuskey D, Abdelghany O, Luo X, Chang JL, Rounsaville BJ, Ding YS, Malison RT (2010) Biological markers of the effects of intravenous methylphenidate on improving inhibitory control in cocaine-dependent patients. Proc Natl Acad Sci U S A 107:14455–9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liddle EB, Hollis C, Batty MJ, Groom MJ, Totman JJ, Liotti M, Scerif G, Liddle PF (2011) Task-related default mode network modulation and inhibitory control in ADHD: effects of motivation and methylphenidate. J Child Psychol Psychiatry 52:761–71

    Article  PubMed  Google Scholar 

  • Luijten M, Machielsen MW, Veltman DJ, Hester R, de Haan L, Franken IH (2014) Systematic review of ERP and fMRI studies investigating inhibitory control and error processing in people with substance dependence and behavioural addictions. J Psychiatry Neurosci: JPN 39:149–69

    Article  PubMed  PubMed Central  Google Scholar 

  • Matuskey D, Luo X, Zhang S, Morgan PT, Abdelghany O, Malison RT, Li CS (2013) Methylphenidate remediates error-preceding activation of the default mode brain regions in cocaine-addicted individuals. Psychiatry Res 214:116–21

    Article  CAS  PubMed  Google Scholar 

  • Mehta MA, Owen AM, Sahakian BJ, Mavaddat N, Pickard JD, Robbins TW (2000) Methylphenidate enhances working memory by modulating discrete frontal and parietal lobe regions in the human brain. J Neurosci 20:RC65

    CAS  PubMed  Google Scholar 

  • Moeller SJ, Tomasi D, Honorio J, Volkow ND, Goldstein RZ (2012a) Dopaminergic involvement during mental fatigue in health and cocaine addiction. Transl Psychiatry 2:e176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moeller SJ, Tomasi D, Woicik PA, Maloney T, Alia-Klein N, Honorio J, Telang F, Wang GJ, Wang R, Sinha R, Carise D, Astone-Twerell J, Bolger J, Volkow ND, Goldstein RZ (2012b) Enhanced midbrain response at 6-month follow-up in cocaine addiction, association with reduced drug-related choice. Addict Biol 17:1013–25

    Article  PubMed  PubMed Central  Google Scholar 

  • Moeller SJ, Parvaz MA, Shumay E, Beebe-Wang N, Konova AB, Alia-Klein N, Volkow ND, Goldstein RZ (2013) Gene x abstinence effects on drug cue reactivity in addiction: multimodal evidence. J Neurosci 33:10027–36

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moeller SJ, Honorio J, Tomasi D, Parvaz MA, Woicik PA, Volkow ND, Goldstein RZ (2014a) Methylphenidate enhances executive function and optimizes prefrontal function in both health and cocaine addiction. Cereb Cortex 24:643–53

    Article  PubMed  Google Scholar 

  • Moeller SJ, Konova AB, Parvaz MA, Tomasi D, Lane RD, Fort C, Goldstein RZ (2014b) Functional, structural, and emotional correlates of impaired insight in cocaine addiction. JAMA Psychiatry 71:61–70

    Article  PubMed  PubMed Central  Google Scholar 

  • Moeller SJ, Beebe-Wang N, Schneider KE, Konova AB, Parvaz MA, Alia-Klein N, Hurd YL, Goldstein RZ (2015) Effects of an opioid (proenkephalin) polymorphism on neural response to errors in health and cocaine use disorder. Behav Brain Res 293:18–26

    Article  CAS  PubMed  Google Scholar 

  • Moeller SJ, Bederson L, Alia-Klein N, Goldstein RZ (2016) Neuroscience of inhibition for addiction medicine: from prediction of initiation to prediction of relapse. Prog Brain Res 223:165-88. doi: 10.1016/bs.pbr.2015.07.007.

  • Muller U, Suckling J, Zelaya F, Honey G, Faessel H, Williams SC, Routledge C, Brown J, Robbins TW, Bullmore ET (2005) Plasma level-dependent effects of methylphenidate on task-related functional magnetic resonance imaging signal changes. Psychopharmacology (Berl) 180:624–33

    Article  Google Scholar 

  • Newsome MR, Scheibel RS, Seignourel PJ, Steinberg JL, Troyanskaya M, Li X, Levin HS (2009) Effects of methylphenidate on working memory in traumatic brain injury: a preliminary FMRI investigation. Brain Imaging Behav 3:298–305

    Article  PubMed  Google Scholar 

  • Owen AM, McMillan KM, Laird AR, Bullmore E (2005) N-back working memory paradigm: a meta-analysis of normative functional neuroimaging studies. Hum Brain Mapp 25:46–59

    Article  PubMed  Google Scholar 

  • Peterson BS, Potenza MN, Wang Z, Zhu H, Martin A, Marsh R, Plessen KJ, Yu S (2009) An FMRI study of the effects of psychostimulants on default-mode processing during Stroop task performance in youths with ADHD. Am J Psychiatry 166:1286–94

    Article  PubMed  PubMed Central  Google Scholar 

  • Rubia K, Halari R, Cubillo A, Smith AB, Mohammad AM, Brammer M, Taylor E (2011a) Methylphenidate normalizes fronto-striatal underactivation during interference inhibition in medication-naive boys with attention-deficit hyperactivity disorder. Neuropsychopharmacology 36:1575–1586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rubia K, Halari R, Mohammad AM, Taylor E, Brammer M (2011b) Methylphenidate normalizes frontocingulate underactivation during error processing in attention-deficit/hyperactivity disorder. Biol Psychiatry 70:255–62

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rubia K, Alegria AA, Cubillo AI, Smith AB, Brammer MJ, Radua J (2014) Effects of stimulants on brain function in attention-deficit/hyperactivity disorder: a systematic review and meta-analysis. Biol Psychiatry 76:616–28

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schultz W (2010) Dopamine signals for reward value and risk: basic and recent data. Behav Brain Funct 6:24

    Article  PubMed  PubMed Central  Google Scholar 

  • Schulz KP, Fan J, Bedard AC, Clerkin SM, Ivanov I, Tang CY, Halperin JM, Newcorn JH (2012) Common and unique therapeutic mechanisms of stimulant and nonstimulant treatments for attention-deficit/hyperactivity disorder. Arch Gen Psychiatry 69:952–61

    Article  PubMed  Google Scholar 

  • Schweitzer JB, Lee DO, Hanford RB, Tagamets MA, Hoffman JM, Grafton ST, Kilts CD (2003) A positron emission tomography study of methylphenidate in adults with ADHD: alterations in resting blood flow and predicting treatment response. Neuropsychopharmacology 28:967–73

    CAS  PubMed  Google Scholar 

  • Schweitzer JB, Lee DO, Hanford RB, Zink CF, Ely TD, Tagamets MA, Hoffman JM, Grafton ST, Kilts CD (2004) Effect of methylphenidate on executive functioning in adults with attention-deficit/hyperactivity disorder: normalization of behavior but not related brain activity. Biol Psychiatry 56:597–606

    Article  CAS  PubMed  Google Scholar 

  • Srinivas NR, Hubbard JW, Quinn D, Korchinski ED, Midha KK (1991) Extensive and enantioselective presystemic metabolism of dl-threo-methylphenidate in humans. Prog Neuro-Psychopharmacol Biol Psychiatry 15:213–20

    Article  CAS  Google Scholar 

  • Swanson J, Baler RD, Volkow ND (2011) Understanding the effects of stimulant medications on cognition in individuals with attention-deficit hyperactivity disorder: a decade of progress. Neuropsychopharmacology 36:207–26

    Article  CAS  PubMed  Google Scholar 

  • Tomasi D, Volkow ND (2011) Functional connectivity hubs in the human brain. Neuroimage 57:908–17

    Article  PubMed  PubMed Central  Google Scholar 

  • Tomasi D, Volkow ND, Wang GJ, Wang R, Telang F, Caparelli EC, Wong C, Jayne M, Fowler JS (2011) Methylphenidate enhances brain activation and deactivation responses to visual attention and working memory tasks in healthy controls. Neuroimage 54:3101–10

    Article  CAS  PubMed  Google Scholar 

  • van der Schaaf ME, Fallon SJ, Ter Huurne N, Buitelaar J, Cools R (2013) Working memory capacity predicts effects of methylphenidate on reversal learning. Neuropsychopharmacology 38:2011–8

    Article  PubMed  PubMed Central  Google Scholar 

  • Vanderhasselt MA, De Raedt R, Baeken C (2009) Dorsolateral prefrontal cortex and Stroop performance: tackling the lateralization. Psychon Bull Rev 16:609–12

    Article  PubMed  Google Scholar 

  • Volkow ND, Tomasi D, Wang GJ, Logan J, Alexoff DL, Jayne M, Fowler JS, Wong C, Yin P, Du C (2014) Stimulant-induced dopamine increases are markedly blunted in active cocaine abusers. Mol Psychiatry 19:1037–43

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wechsler D (1997) Wechsler Adult Intelligence Scale, 3rd edn. Psychological Corporation, San Antonio, TX

    Google Scholar 

  • Wechsler D (1999) Wechsler abbreviated scale of intelligence. Psychological Corporation, San Antonio, TX

    Google Scholar 

  • Wilkinson G (1993) The Wide-Range Achievement Test 3—administration manual. Wide Range Inc., Wilmington, DE

    Google Scholar 

  • Woicik PA, Moeller SJ, Alia-Klein N, Maloney T, Lukasik TM, Yeliosof O, Wang GJ, Volkow ND, Goldstein RZ (2009) The neuropsychology of cocaine addiction: recent cocaine use masks impairment. Neuropsychopharmacology 34:1112–1122

    Article  CAS  PubMed  Google Scholar 

  • Wong CG, Stevens MC (2012) The effects of stimulant medication on working memory functional connectivity in attention-deficit/hyperactivity disorder. Biol Psychiatry 71:458–66

    Article  CAS  PubMed  Google Scholar 

  • Zald DH, Cowan RL, Riccardi P, Baldwin RM, Ansari MS, Li R, Shelby ES, Smith CE, McHugo M, Kessler RM (2008) Midbrain dopamine receptor availability is inversely associated with novelty-seeking traits in humans. J Neurosci 28:14372–8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This study was supported by grants from the National Institute on Drug Abuse (to RZG: R01DA023579; to SJM: F32DA030017, K01DA037452; to ABK: F32DA039648; to MAP: F32DA033088). The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health. We also thank Dr. Elena Shumay, whom the scientific community has lost too prematurely, for help with analyses in earlier versions of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Scott J. Moeller or Rita Z. Goldstein.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 39 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moeller, S.J., Konova, A.B., Tomasi, D. et al. Abnormal response to methylphenidate across multiple fMRI procedures in cocaine use disorder: feasibility study. Psychopharmacology 233, 2559–2569 (2016). https://doi.org/10.1007/s00213-016-4307-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-016-4307-9

Keywords

Navigation