Skip to main content

Advertisement

Log in

A longitudinal examination of adolescent response inhibition: neural differences before and after the initiation of heavy drinking

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

Response inhibition abnormalities contribute to several maladaptive behaviors commonly observed during adolescence, including heavy drinking.

Objectives

The present study aimed to determine whether abnormalities in brain response during response inhibition predate or follow adolescents’ transition into heavy drinking, which is pivotal in identifying the neural antecedents and consequences of adolescent alcohol use.

Methods

Longitudinal functional magnetic resonance imaging (fMRI) acquired during a response inhibition task was collected on adolescents before the onset of heavy drinking and then again on the same scanner approximately 3 years later. Adolescents who transitioned into heavy drinking (n = 20) were matched to continuously nondrinking adolescents (n = 20) on baseline and follow-up demographic and developmental variables.

Results

During no-go relative to go trials, participants showed responses common to inhibitory circuitry: frontal (e.g., pre-supplementary motor area), temporal, and parietal regions. A repeated measures analysis of covariance revealed that adolescents who later transitioned into heavy drinking showed less fMRI response contrast at baseline than continuous nondrinkers in frontal, parietal, subcortical, and cerebellar regions (p < 0.01, clusters >756 μl), then increased activation after the onset of heavy drinking in frontal, parietal, and cerebellar areas.

Conclusions

Future heavy drinkers showed less activation of inhibitory circuitry before the onset of heavy drinking. After transitioning into heavy drinking, they showed more activation during response inhibition than nondrinking controls. These results contribute to the growing literature suggesting that neural vulnerabilities exist prior to the onset of substance use, and the initiation of heavy drinking may lead to additional alterations in brain functioning.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. d′ = Φ−1(H) – Φ−1(F). Φ−1 = z score, (H) = hit rate, (F) = false alarm rate.

  2. \( \beta =e{\left[\frac{{\left[{\varPhi}^{-1}(F)\right]}^2-\left[{\varPhi}^{-1}(H)\right]}{2}\right]}^2 \).

References

  • Achenbach TM, Rescorla LA (2001) Manual for the ASEBA school-age forms & profiles. University of Vermont, Research Center for Children, Youth, & Families, Burlington

    Google Scholar 

  • Achenbach TM, Rescorla LA (2003) Manual for the ASEBA adult forms & profiles. University of Vermont, Research Center for Children, Youth, & Families, Burlington

    Google Scholar 

  • American Psychiatric Association (1994) Diagnostic and statistical manual of mental disorders, 4th edition (DSM-IV). American Psychiatric Association, Washington, DC

    Google Scholar 

  • Bandettini PA, Jesmanowicz A, Wong EC, Hyde JS (1993) Processing strategies for time-course data sets in functional MRI of the human brain. Magn Reson Med 30:161–173

    Article  PubMed  CAS  Google Scholar 

  • Bava S, Thayer R, Jacobus J, Ward M, Jernigan TL, Tapert SF (2011) Longitudinal characterization of white matter maturation during adolescence. Brain Res 1327:38–46

    Article  Google Scholar 

  • Brown SA, Myers MG, Lippke L, Tapert SF, Stewart DG, Vik PW (1998) Psychometric evaluation of the Customary Drinking and Drug Use Record (CDDR): a measure of adolescent alcohol and drug involvement. J Stud Alcohol 59:427–438

    PubMed  CAS  Google Scholar 

  • Cahalan D, Cisin I, Crossley H (1969) American drinking practices. Monograph No. 6. Rutgers Center of Alcohol Studies, New Brunswick

  • Corbetta M, Shulman GL (2002) Control of goal-directed and stimulus-driven attention in the brain. Nat Rev Neurosci 3:201–215

    Article  PubMed  CAS  Google Scholar 

  • Corbetta M, Shulman GL (2011) Spatial neglect and attention networks. Annu Rev Neurosci 34:569–599

    Article  PubMed  CAS  Google Scholar 

  • Cox RW (1996) AFNI: software for analysis and visualization of functional magnetic resonance neuroimages. Comput Biomed Res 29:162–173

    Article  PubMed  CAS  Google Scholar 

  • Cox RW, Jesmanowicz A (1999) Real-time 3D image registration for functional MRI. Magn Reson Med 42:1014–1018

    Article  PubMed  CAS  Google Scholar 

  • Criaud M, Boulinguez P (2013) Have we been asking the right questions when assessing response inhibition in go/no-go tasks with fMRI? A meta-analysis and critical review. Neurosci Biobehav Rev 37:11–23. doi:10.1016/j.neubiorev.2012.11.003

    Article  PubMed  Google Scholar 

  • Durston S, Davidson MC, Tottenham N, Galvan A, Spicer J, Fossella JA et al (2006) A shift from diffuse to focal cortical activity with development. Dev Sci 9:1–8. doi:10.1111/j.1467-7687.2005.00454.x

    Article  PubMed  Google Scholar 

  • Forbes EE, Dahl RE (2010) Pubertal development and behavior: hormonal activation of social and motivational tendencies. Brain Cogn 72:66–72. doi:10.1016/j.bandc.2009.10.007

    Article  PubMed  Google Scholar 

  • Green DM, Swets JA (1966) Signal-detection theory and psychophysics. Wiley, New York

    Google Scholar 

  • Hollingshead AB (1965) Two-factor index of social position. Yale University, New Haven

    Google Scholar 

  • Johnston LD, O’Malley PM, Bachman JG, Schulenberg JE (2012) Monitoring the future national survey results on drug use, 1975–2009: volume I, secondary school students. Institute for Social Research, Ann Arbor

    Google Scholar 

  • Lee CM, Maggs JL, Neighbors C, Patrick ME (2011) Positive and negative alcohol-related consequences: associations with past drinking. J Adolesc 34:87–94. doi:10.1016/j.adolescence.2010.01.009

    Article  PubMed  CAS  Google Scholar 

  • Luna B, Sweeney JA (2004) The emergence of collaborative brain function: FMRI studies of the development of response inhibition. Ann N Y Acad Sci 1021:296–309. doi:10.1196/annals.1308.035

    Article  PubMed  Google Scholar 

  • Luna B, Padmanabhan A, O’Hearn K (2010) What has fMRI told us about the development of cognitive control through adolescence? Brain Cogn 72:101–113. doi:10.1016/j.bandc.2009.08.005

    Article  PubMed  Google Scholar 

  • Mahmood OM, Goldenberg D, Thayer R, Migliorini R, Simmons AN, Tapert SF (2012) Adolescents’ fMRI activation to a response inhibition task predicts future substance use. Addict Behav 38:1435–1441. doi:10.1016/j.addbeh.2012.07.012

    Article  PubMed  Google Scholar 

  • Munakata Y, Snyder HR, Chatham CH (2012) Developing cognitive control: three key transitions. Curr Dir Psychol Sci 21:71–77. doi:10.1177/0963721412436807

    Article  PubMed  Google Scholar 

  • Noonan MP, Mars RB, Rushworth MF (2011) Distinct roles of three frontal cortical areas in reward-guided behavior. J Neurosci 31:14399–14412. doi:10.1523/JNEUROSCI.6456-10.2011

    Article  PubMed  CAS  Google Scholar 

  • Norman AL, Pulido C, Squeglia LM, Spadoni AD, Paulus MP, Tapert SF (2011) Neural activation during inhibition predicts initiation of substance use in adolescence. Drug Alcohol Depend 119:216–223. doi:10.1016/j.drugalcdep.2011.06.019

    Article  PubMed  Google Scholar 

  • Petersen AC, Crockett L, Richards M, Boxer A (1988) A self-report measure of pubertal status: reliability, validity, and initial norms. J Youth Adolesc 17:117–133

    Article  Google Scholar 

  • Pulido C, Anderson KG, Armstead AG, Brown SA, Tapert SF (2009) Family history of alcohol-use disorders and spatial working memory: effects on adolescent alcohol expectancies. J Stud Alcohol Drugs 70:87–91

    PubMed  Google Scholar 

  • Quinn PD, Fromme K (2010) Self-regulation as a protective factor against risky drinking and sexual behavior. Psychol Addict Behav 24:376–385. doi:10.1037/a0018547

    Article  PubMed  Google Scholar 

  • Rice JP, Reich T, Bucholz KK, Neuman RJ, Fishman R, Rochberg N et al (1995) Comparison of direct interview and family history diagnoses of alcohol dependence. Alcohol Clin Exp Res 19:1018–1023

    Article  PubMed  CAS  Google Scholar 

  • Rubia K, Smith AB, Woolley J, Nosarti C, Heyman I, Taylor E et al (2006) Progressive increase of frontostriatal brain activation from childhood to adulthood during event-related tasks of cognitive control. Hum Brain Mapp 27:973–993. doi:10.1002/hbm.20237

    Article  PubMed  Google Scholar 

  • Shaffer D, Fisher P, Dulcan MK, Davies M, Piacentini J, Schwab-Stone ME et al (1996) The NIMH Diagnostic Interview Schedule for Children Version 2.3 (DISC-2.3): description, acceptability, prevalence rates, and performance in the MECA Study. Methods for the Epidemiology of Child and Adolescent Mental Disorders Study. J Am Acad Child Adolesc Psychiatry 35:865–877

    Article  PubMed  CAS  Google Scholar 

  • Sobell LC, Sobell MB (1992) Timeline follow-back: a technique for assessing self-reported ethanol consumption. In: Allen J, Litten RZ (eds) Measuring alcohol consumption: psychosocial and biological methods. Humana, Totowa, pp 41–72

    Chapter  Google Scholar 

  • Squeglia LM, Jacobus J, Tapert SF (2009a) The influence of substance use on adolescent brain development. Clin EEG Neurosci 40:31–38

    Article  PubMed  CAS  Google Scholar 

  • Squeglia LM, Spadoni AD, Infante MA, Myers MG, Tapert SF (2009b) Initiating moderate to heavy alcohol use predicts changes in neuropsychological functioning for adolescent girls and boys. Psychol Addict Behav 23:715–722

    Article  PubMed  Google Scholar 

  • Squeglia LM, Schweinsburg AD, Pulido C, Tapert SF (2011) Adolescent binge drinking linked to abnormal spatial working memory brain activation: differential gender effects. Alcohol Clin Exp Res 35:1831–1841. doi:10.1111/j.1530-0277.2011.01527.x

    Article  PubMed  Google Scholar 

  • Squeglia LM, Pulido C, Wetherill RR, Jacobus J, Brown GG, Tapert SF (2012a) Brain response to working memory over three years of adolescence: influence of initiating heavy drinking. J Stud Alcohol Drugs 73:749–760

    PubMed  Google Scholar 

  • Squeglia LM, Sorg SF, Schweinsburg AD, Wetherill RR, Pulido C, Tapert SF (2012b) Binge drinking differentially affects adolescent male and female brain morphometry. Psychopharmacology 220:529–539. doi:10.1007/s00213-011-2500-4

    Article  PubMed  CAS  Google Scholar 

  • Stevens MC, Kiehl KA, Pearlson GD, Calhoun VD (2007) Functional neural networks underlying response inhibition in adolescents and adults. Behav Brain Res 181:12–22. doi:10.1016/j.bbr.2007.03.023

    Article  PubMed  Google Scholar 

  • Swick D, Ashley V, Turken U (2011) Are the neural correlates of stopping and not going identical? Quantitative meta-analysis of two response inhibition tasks. NeuroImage 56:1655–1665. doi:10.1016/j.neuroimage.2011.02.070

    Article  PubMed  Google Scholar 

  • Talairach J, Tournoux P (1998) Co-planar stereotaxic atlas of the human brain: 3-dimensional proportional system: an approach to cerebral imaging. Thieme Medical, New York

    Google Scholar 

  • Velanova K, Wheeler ME, Luna B (2008) Maturational changes in anterior cingulate and frontoparietal recruitment support the development of error processing and inhibitory control. Cereb Cortex 18:2505–2522. doi:10.1093/cercor/bhn012

    Article  PubMed  Google Scholar 

  • Wechsler D (1999) Manual for the Wechsler Abbreviated Scale of Intelligence. Psychological Corporation, San Antonio

    Google Scholar 

  • Wetherill RR, Bava S, Thompson WK, Boucquey V, Pulido C, Yang TT et al (2012a) Frontoparietal connectivity in substance-naive youth with and without a family history of alcoholism. Brain Res 1432:66–73. doi:10.1016/j.brainres.2011.11.013

    Article  PubMed  CAS  Google Scholar 

  • Wetherill RR, Castro N, Squeglia LM, Tapert SF (2012b) Atypical neural activity during inhibitory processing in substance-naive youth who later experience alcohol-induced blackouts. Drug Alcohol Depend 128:243–249. doi:10.1016/j.drugalcdep.2012.09.003

    Article  PubMed  Google Scholar 

  • Wilkinson G (1993) The Wide Range Achievement Test-3 administration manual. Jastak Associates, Wilmington

    Google Scholar 

  • Windle M, Spear LP, Fuligni AJ, Angold A, Brown JD, Pine D et al (2008) Transitions into underage and problem drinking: developmental processes and mechanisms between 10 and 15 years of age. Pediatrics 121(Suppl 4):S273–S289. doi:10.1542/peds.2007-2243C

    Article  PubMed  Google Scholar 

  • Witt ED (2010) Research on alcohol and adolescent brain development: opportunities and future directions. Alcohol 44:119–124. doi:10.1016/j.alcohol.2009.08.011

    Article  PubMed  CAS  Google Scholar 

  • Zucker RA, Ellis DA, Fitzgerald HE (1994) Developmental evidence for at least two alcoholisms. I. Biopsychosocial variation among pathways into symptomatic difficulty. Ann N Y Acad Sci 708:134–146

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was made possible by funding from the National Institute on Alcohol Abuse and Alcoholism (R01 AA13419, T32 AA013525).

Conflict of interest

The authors declare no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susan F. Tapert.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 115 kb)

ESM 2

(DOCX 95 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wetherill, R.R., Squeglia, L.M., Yang, T.T. et al. A longitudinal examination of adolescent response inhibition: neural differences before and after the initiation of heavy drinking. Psychopharmacology 230, 663–671 (2013). https://doi.org/10.1007/s00213-013-3198-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-013-3198-2

Keywords

Navigation