Skip to main content

Advertisement

Log in

The PDE5 inhibitor vardenafil does not affect auditory sensory gating in rats and humans

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

Sensory gating is an adaptive mechanism of the brain to prevent overstimulation. Patients suffering from clinical disorders such as Alzheimer’s disease or schizophrenia exhibit a deficit in gating, which indicates not only an impairment in basic information processing that might contribute to the cognitive problems seen in these patients. Phosphodiesterase type 5 inhibitors (PDE5-Is) have been shown to improve cognition in rodents in various behavioural tasks and might consequently be an interesting target for cognition enhancement. However, the effects of PDE5-Is on sensory gating are not known yet.

Objectives

This work aims to study the effects of PDE5 inhibition on auditory sensory gating in rats and humans.

Methods

In the rat study, vehicle or 0.3–3 mg/kg of the PDE5-I vardenafil was given orally 30 min before testing and electrode locations were the vertex, hippocampus and the striatum. The human subjects received placebo, 10–20 mg vardenafil 85 min before testing and sensory gating was measured at the cortex (Fz, Fcz and Cz) electrodes.

Results

Significant gating was only found for the N1 component in rats while all three peaks P1, N1 and P2 showed gating in humans, i.e. the response to the second sound click was decreased as compared with the first for these deflections. Administration of vardenafil did neither have an effect on sensory gating in rats nor in humans.

Conclusions

These findings imply that positive effects of PDE5 inhibition on cognition are not mediated by more early phases of information processing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Adler LE, Pachtman E, Franks RD, Pecevich M, Waldo MC, Freedman R (1982) Neurophysiological evidence for a defect in neuronal mechanisms involved in sensory gating in schizophrenia. Biol Psychiatry 17:639–654

    PubMed  CAS  Google Scholar 

  • Akhondzadeh S, Ghayyoumi R, Rezaei F, Salehi B, Modabbernia AH, Maroufi A, Esfandiari GR, Naderi M, Ghebleh F, Tabrizi M, Rezazadeh SA (2011) Sildenafil adjunctive therapy to risperidone in the treatment of the negative symptoms of schizophrenia: a double-blind randomized placebo-controlled trial. Psychopharmacol (Berl) 213:809–815

    Article  CAS  Google Scholar 

  • Ally BA, Jones GE, Cole JA, Budson AE (2006) Sensory gating in patients with Alzheimer's disease and their biological children. Am J Alzheimers Dis Other Demen 21:439–447

    Article  PubMed  Google Scholar 

  • Bender AT, Beavo JA (2006) Cyclic nucleotide phosphodiesterases: molecular regulation to clinical use. Pharmacol Rev 58:488–520

    Article  PubMed  CAS  Google Scholar 

  • Boutros NN, Brockhaus-Dumke A, Gjini K, Vedeniapin A, Elfakhani M, Burroughs S, Keshavan M (2009) Sensory-gating deficit of the N100 mid-latency auditory evoked potential in medicated schizophrenia patients. Schizophr Res 113:339–346

    Article  PubMed  Google Scholar 

  • Broberg BV, Oranje B, Glenthoj BY, Fejgin K, Plath N, Bastlund JF (2010) Assessment of auditory sensory processing in a neurodevelopmental animal model of schizophrenia—gating of auditory-evoked potentials and prepulse inhibition. Behav Brain Res 213:142–147

    Article  PubMed  Google Scholar 

  • Cadenhead KS, Light GA, Shafer KM, Braff DL (2005) P50 suppression in individuals at risk for schizophrenia: the convergence of clinical, familial, and vulnerability marker risk assessment. Biol Psychiatry 57:1504–1509

    Article  PubMed  Google Scholar 

  • Chang WP, Arfken CL, Sangal MP, Boutros NN (2011) Probing the relative contribution of the first and second responses to sensory gating indices: a meta-analysis. Psychophysiology 48:980–992

    Article  PubMed  Google Scholar 

  • Cromwell HC, Mears RP, Wan L, Boutros NN (2008) Sensory gating: a translational effort from basic to clinical science. Clin EEG Neurosci 39:69–72

    Article  PubMed  Google Scholar 

  • Dalecki A, Croft RJ, Johnstone SJ (2011) An evaluation of P50 paired-click methodologies. Psychophysiology 48:1692–1700

    Article  PubMed  Google Scholar 

  • Devan BD, Bowker JL, Duffy KB, Bharati IS, Jimenez M, Sierra-Mercado D Jr, Nelson CM, Spangler EL, Ingram DK (2006) Phosphodiesterase inhibition by sildenafil citrate attenuates a maze learning impairment in rats induced by nitric oxide synthase inhibition. Psychopharmacol (Berl) 183:439–445

    Article  CAS  Google Scholar 

  • Devan BD, Pistell PJ, Daffin LW Jr, Nelson CM, Duffy KB, Bowker JL, Bharati IS, Sierra-Mercado D, Spangler EL, Ingram DK (2007) Sildenafil citrate attenuates a complex maze impairment induced by intracerebroventricular infusion of the NOS inhibitor N(omega)-nitro-l-arginine methyl ester. Eur J Pharmacol 563:134–140

    Article  PubMed  CAS  Google Scholar 

  • EMEA (2008) European Public Assessment Report; revision 6. Available from www.emea.europa.eu

  • Goff DC, Cather C, Freudenreich O, Henderson DC, Evins AE, Culhane MA, Walsh JP (2009) A placebo-controlled study of sildenafil effects on cognition in schizophrenia. Psychopharmacol (Berl) 202:411–417

    Article  CAS  Google Scholar 

  • Grass H, Klotz T, Fathian-Sabet B, Berghaus G, Engelmann U, Kaferstein H (2001) Sildenafil (Viagra): is there an influence on psychological performance? Int Urol Nephrol 32:409–412

    Article  PubMed  CAS  Google Scholar 

  • Hajos M (2006) Targeting information-processing deficit in schizophrenia: a novel approach to psychotherapeutic drug discovery. Trends Pharmacol Sci 27:391–398

    Article  PubMed  CAS  Google Scholar 

  • Halene TB, Siegel SJ (2008) Antipsychotic-like properties of PDE4 inhibitors—evaluation of RO-20-1724 with auditory event related potentials and prepulse inhibition of startle. J Pharmacol Exp Ther 326:230–239

    Article  PubMed  CAS  Google Scholar 

  • Hitchcock SA, Pennington LD (2006) Structure–brain exposure relationships. J Med Chem 49:7559–7583

    Article  PubMed  CAS  Google Scholar 

  • Jasper H (1958) The ten–twenty electrode system of the international federation. Electroencephalogr Clin Neurophysiol 10:371–375

    Google Scholar 

  • Javitt DC (2009) Sensory processing in schizophrenia: neither simple nor intact. Schizophr Bull 35:1059–1064

    Article  PubMed  Google Scholar 

  • Jessen F, Kucharski C, Fries T, Papassotiropoulos A, Hoenig K, Maier W, Heun R (2001) Sensory gating deficit expressed by a disturbed suppression of the P50 event-related potential in patients with Alzheimer's disease. Am J Psychiatry 158:1319–1321

    Article  PubMed  CAS  Google Scholar 

  • Lijffijt M, Moeller FG, Boutros NN, Burroughs S, Lane SD, Steinberg JL, Swann AC (2009) The role of age, gender, education, and intelligence in P50, N100, and P200 auditory sensory gating. J Psychophysiol 23:52–62

    Article  PubMed  Google Scholar 

  • Maxwell CR, Liang Y, Weightman BD, Kanes SJ, Abel T, Gur RE, Turetsky BI, Bilker WB, Lenox RH, Siegel SJ (2004) Effects of chronic olanzapine and haloperidol differ on the mouse N1 auditory evoked potential. Neuropsychopharmacology 29:739–746

    Article  PubMed  CAS  Google Scholar 

  • Mears RP, Klein AC, Cromwell HC (2006) Auditory inhibitory gating in medial prefrontal cortex: single unit and local field potential analysis. Neuroscience 141:47–65

    Article  PubMed  CAS  Google Scholar 

  • Mears RP, Boutros NN, Cromwell HC (2009) Reduction of prelimbic inhibitory gating of auditory evoked potentials after fear conditioning. Behav Neurosci 123:315–327

    Article  PubMed  Google Scholar 

  • Miyazato H, Skinner RD, Garcia-Rill E (1999) Neurochemical modulation of the P13 midlatency auditory evoked potential in the rat. Neuroscience 92:911–920

    Article  PubMed  CAS  Google Scholar 

  • Paxinos G, Watson C (1998) The rat brain in stereotaxic coordinates, 4th edn. Academic, New York

    Google Scholar 

  • Prickaerts J, de Vente J, Honig W, Steinbusch HW, Blokland A (2002a) cGMP, but not cAMP, in rat hippocampus is involved in early stages of object memory consolidation. Eur J Pharmacol 436:83–87

    Article  PubMed  CAS  Google Scholar 

  • Prickaerts J, van Staveren WC, Sik A, Markerink-van Ittersum M, Niewohner U, van der Staay FJ, Blokland A, de Vente J (2002b) Effects of two selective phosphodiesterase type 5 inhibitors, sildenafil and vardenafil, on object recognition memory and hippocampal cyclic GMP levels in the rat. Neuroscience 113:351–361

    Article  PubMed  CAS  Google Scholar 

  • Prickaerts J, Sik A, van Staveren WC, Koopmans G, Steinbusch HW, van der Staay FJ, de Vente J, Blokland A (2004) Phosphodiesterase type 5 inhibition improves early memory consolidation of object information. Neurochem Int 45:915–928

    Article  PubMed  CAS  Google Scholar 

  • Reagan-Shaw S, Nihal M, Ahmad N (2008) Dose translation from animal to human studies revisited. FASEB J 22:659–661

    Article  PubMed  CAS  Google Scholar 

  • Reneerkens OA, Rutten K, Steinbusch HW, Blokland A, Prickaerts J (2009) Selective phosphodiesterase inhibitors: a promising target for cognition enhancement. Psychopharmacol (Berl) 202:419–443

    Article  CAS  Google Scholar 

  • Reneerkens OA, Rutten K, Akkerman S, Blokland A, Shaffer CL, Menniti FS, Steinbusch HW, Prickaerts J (2012) Phosphodiesterase type 5 (PDE5) inhibition improves object recognition memory: indications for central and peripheral mechanisms. Neurobiol Learn Mem 97:370–379

    Article  PubMed  CAS  Google Scholar 

  • Rutten K, Prickaerts J, Hendrix M, van der Staay FJ, Sik A, Blokland A (2007) Time-dependent involvement of cAMP and cGMP in consolidation of object memory: studies using selective phosphodiesterase type 2, 4 and 5 inhibitors. Eur J Pharmacol 558:107–112

    Article  PubMed  CAS  Google Scholar 

  • Rutten K, Basile JL, Prickaerts J, Blokland A, Vivian JA (2008) Selective PDE inhibitors rolipram and sildenafil improve object retrieval performance in adult cynomolgus macaques. Psychopharmacol (Berl) 196:643–648

    Article  CAS  Google Scholar 

  • Rutten K, Van Donkelaar EL, Ferrington L, Blokland A, Bollen E, Steinbusch HW, Kelly PA, Prickaerts JH (2009) Phosphodiesterase inhibitors enhance object memory independent of cerebral blood flow and glucose utilization in rats. Neuropsychopharmacology 34:1914–1925

    Article  PubMed  CAS  Google Scholar 

  • Sambeth A, Maes JH, Van Luijtelaar G, Molenkamp IB, Jongsma ML, Van Rijn CM (2003) Auditory event-related potentials in humans and rats: effects of task manipulation. Psychophysiology 40:60–68

    Article  PubMed  Google Scholar 

  • Sambeth A, Riedel WJ, Smits LT, Blokland A (2007) Cholinergic drugs affect novel object recognition in rats: relation with hippocampal EEG? Eur J Pharmacol 572:151–159

    Article  PubMed  CAS  Google Scholar 

  • Schultheiss D, Muller SV, Nager W, Stief CG, Schlote N, Jonas U, Asvestis C, Johannes S, Munte TF (2001) Central effects of sildenafil (Viagra) on auditory selective attention and verbal recognition memory in humans: a study with event-related brain potentials. World J Urol 19:46–50

    Article  PubMed  CAS  Google Scholar 

  • Shim YS, Pae CU, Kim SW, Kim HW, Kim JC, Koh JS (2011) Effects of repeated dosing with udenafil (Zydena) on cognition, somatization and erection in patients with erectile dysfunction: a pilot study. Int J Impot Res 23:109–114

    Article  PubMed  CAS  Google Scholar 

  • van Donkelaar EL, Rutten K, Blokland A, Akkerman S, Steinbusch HW, Prickaerts J (2008) Phosphodiesterase 2 and 5 inhibition attenuates the object memory deficit induced by acute tryptophan depletion. Eur J Pharmacol 600:98–104

    Article  PubMed  Google Scholar 

  • Wan L, Crawford HJ, Boutros N (2006) P50 sensory gating: impact of high vs. low schizotypal personality and smoking status. Int J Psychophysiol 60:1–9

    Article  PubMed  Google Scholar 

  • Wan L, Crawford HJ, Boutros N (2007) Early and late auditory sensory gating: moderating influences from schizotypal personality, tobacco smoking status, and acute smoking. Psychiatry Res 151:11–20

    Article  PubMed  Google Scholar 

  • Zhou D, Ma Y, Liu N, Chen L, He M, Miao Y (2008) Influence of physical parameters of sound on the sensory gating effects of N40 in rats. Neurosci Lett 432:100–104

    Article  PubMed  CAS  Google Scholar 

Download references

Conflicts of interest

None

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Prickaerts.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reneerkens, O.A.H., Sambeth, A., Van Duinen, M.A. et al. The PDE5 inhibitor vardenafil does not affect auditory sensory gating in rats and humans. Psychopharmacology 225, 303–312 (2013). https://doi.org/10.1007/s00213-012-2817-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-012-2817-7

Keywords

Navigation