Skip to main content
Log in

The effects of chronic versus acute desipramine on nicotine withdrawal and nicotine self-administration in the rat

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

Nicotine withdrawal is characterized by depression-like symptomatology that may be mediated by dysregulations in norepinephrine transmission. These aversive aspects of nicotine withdrawal and the rewarding effects of nicotine play major roles in maintaining nicotine dependence.

Objectives

The aim of this work was to evaluate the effects of desipramine (DMI), a preferential norepinephrine reuptake inhibitor and antidepressant, on preclinical models of nicotine dependence in rats.

Materials and methods

A rate-independent current-intensity discrete-trial threshold intracranial self-stimulation procedure was used to assess brain reward function during nicotine withdrawal induced by cessation of nicotine infusion via subcutaneous osmotic mini pumps (3.16 mg/kg/day, base). Nicotine withdrawal was also measured by somatic signs of withdrawal. DMI was administered acutely (2 or 5 mg/kg, salt) during nicotine/saline withdrawal. In other naïve rats, chronic DMI treatment via mini pump (15 mg/kg/day, salt) began after 7 days of nicotine/saline exposure and continued during administration of nicotine/saline for 14 days and during nicotine/saline withdrawal. Additional rats acquired intravenous nicotine- or food-maintained responding, were prepared with DMI/vehicle-containing mini pumps, and self-administered nicotine or food during 12 days of DMI/vehicle exposure.

Results

Acute DMI administration had no effect on threshold elevations observed in nicotine-withdrawing rats. Chronic DMI administration prevented the reward threshold elevations and the increased somatic signs of nicotine withdrawal. Although chronic DMI significantly decreased nicotine self-administration, it also decreased food-maintained responding.

Conclusions

The results suggest that norepinephrine reuptake inhibitors may be effective anti-smoking treatments that reduce the anhedonic depression-like and somatic components of nicotine withdrawal and may alter the rewarding effects of nicotine and food.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • American Psychiatric Association (1994) Diagnostic and statistical manual of mental disorders, 4th edn. American Psychiatric Press, Washington, DC

    Google Scholar 

  • Benmansour S, Cecchi M, Morilak DA, Gerhardt GA, Javors MA, Gould GG, Frazer A (1999) Effects of chronic antidepressant treatments on serotonin transporter function, density, and mRNA level. J Neurosci 19:10494–10501

    PubMed  CAS  Google Scholar 

  • Benmansour S, Altamarino AV, Jones DJ, Sanchez TA, Gould GG, Pardon MC et al (2004) Regulation of the norepinephrine transporter by chronic administration of antidepressants. Biol Psychiatry 55:313–316

    Article  PubMed  CAS  Google Scholar 

  • Blokhina EA, Kashkin VA, Zvartau EE, Danysz W, Bespalov AY (2005) Effects of nicotinic and NMDA receptor channel blockers on intravenous cocaine and nicotine self-administration in mice. Eur Neuropsychopharmacol 15:219–225

    Article  PubMed  CAS  Google Scholar 

  • Bruijnzeel AW, Markou A (2003) Characterization of the effects of bupropion on the reinforcing properties of nicotine and food in rats. Synapse 50:20–28

    Article  PubMed  CAS  Google Scholar 

  • Bruijnzeel AW, Markou A (2004) Adaptations in cholinergic transmission in the ventral tegmental area associated with the affective signs of nicotine withdrawal in rats. Neuropharmacology 47:572–579

    Article  PubMed  CAS  Google Scholar 

  • Carboni E, Tanda GL, Frau R, Di Chiara G (1990) Blockade of the noradrenaline carrier increases extracellular dopamine in the prefrontal cortex: evidence that dopamine is taken up by noradrenergic terminals. J Neurochem 55:1067–1070

    Article  PubMed  CAS  Google Scholar 

  • Chen F, Lawrence AJ (2003) The effects of antidepressant treatment on serotonergic and dopaminergic systems in fawn-hooded rats: a quantitative autoradiography study. Brain Res 976:22–29

    Article  PubMed  CAS  Google Scholar 

  • Covey LS, Glassman AH (1991) A meta-analysis of double-blind placebo-controlled trials of clonidine for smoking cessation. Br J Addict 86:991–998

    Article  PubMed  CAS  Google Scholar 

  • Cryan JF, Bruijnzeel AW, Skjei KL, Markou A (2003a) Bupropion enhances brain reward function and reverses the affective and somatic aspects of nicotine withdrawal in the rat. Psychopharmacology 168:347–358

    Article  PubMed  CAS  Google Scholar 

  • Cryan JF, Markou A, Lucki I (2003b) Assessing antidepressant activity in rodents: recent developments and future needs. Trends Pharmacol Sci 23(5):238–245

    Article  Google Scholar 

  • Damaj MI, Carroll FI, Eaton JB, Navarro HA, Blough BE, Mirza S et al (2004) Enantioselective effects of hydroxy metabolites of bupropion on behavior and on function of monoamine transporters and nicotine receptors. Mol Pharmacol 66:675–682

    Article  PubMed  CAS  Google Scholar 

  • Dani JA, De Biasi M (2001) Cellular mechanisms of nicotine addiction. Pharmacol Biochem Behav 70:439–446

    Article  PubMed  CAS  Google Scholar 

  • David V, Besson M, Changeux JP, Granon S, Cazala P (2006) Reinforcing effects of nicotine microinjections into the ventral tegmental area of mice: dependence on cholinergic nicotinic and dopaminergic D1 receptors. Neuropharmacology 50:1030–1040

    Article  PubMed  CAS  Google Scholar 

  • Dews PB (1955) Studies on behavior: I. Differential sensitivity to pentobarbital of pecking performance in pigeons depending on the schedule of reward. J Pharmacol Exp Ther 138:393–401

    Google Scholar 

  • Dong J, Blier P (2001) Modification of norepinephrine and serotonin, but not dopamine, neuron firing by sustained bupropion treatment. Psychopharmacology 155:52–57

    Article  PubMed  CAS  Google Scholar 

  • Durcan MJ, McWilliam JR, Campbell IC, Neale MC, Dunn G (1988) Chronic antidepressant drug regimes and food and water intake in rats. Pharmacol Biochem Behav 30(2):299–302

    Article  PubMed  CAS  Google Scholar 

  • Epping-Jordan MP, Watkins SS, Koob GF, Markou A (1998) Dramatic decreases in brain reward function during nicotine withdrawal. Nature 393:76–79

    Article  PubMed  CAS  Google Scholar 

  • Fernstrom MH, Kupfer DJ (1988) Antidepressant-induced weight-gain: a comparison of four medications. Psychiatry Res 26(3):265–271

    Article  PubMed  CAS  Google Scholar 

  • Ferris RM, Cooper BR, Maxwell RA (1983) Studies of bupropion’s mechanism of antidepressant activity. J Clin Psychiatry 44:74–78

    PubMed  CAS  Google Scholar 

  • Fibiger HC, Phillips AG (1981) Increased intracranial self-stimulation in rats after long-term administration of desipramine. Science 214(45121):683–685

    Article  PubMed  CAS  Google Scholar 

  • Frazer A (2001) Serotonergic and noradrenergic reuptake inhibitors: prediction of clinical effects from in vitro potencies. J Clin Psychiatry 12(62 Suppl):16–23

    Google Scholar 

  • Fryer JD, Lukas RJ (1999) Noncompetitive functional inhibition at diverse, human nicotinic acetylcholine receptor subtypes by bupropion, phencyclidine, and ibogaine. J Pharmacol Exp Ther 288:88–92

    PubMed  CAS  Google Scholar 

  • Geyer MA, Markou A (1995) Animal models of psychiatric disorders. In: Bloom FE, Kupfer DJ (eds) Psychopharmacology: the fourth generation of progress. Raven Press, New York, NY, pp 787–798

    Google Scholar 

  • Glick SD, Maisonneuve IM, Kitchen BA (2002) Modulation of nicotine self-administration in rats by combination therapy with agents blocking α3β4 nicotinic receptors. Eur J Pharmacol 448:185–191

    Article  PubMed  CAS  Google Scholar 

  • Gobbi G, Slater S, Boucher N, Debonnel G, Blier P (2003) Neurochemical and psychotropic effects of bupropion in healthy male subjects. J Clin Psychopharmacol 23:233–239

    Article  PubMed  CAS  Google Scholar 

  • Hall FS, Stellar JR, Kelley AE (1990) Acute and chronic desipramine treatment effects on rewarding electrical stimulation of the lateral hypothalamus. Pharmacol Biochem Behav 37:277–281

    Article  PubMed  CAS  Google Scholar 

  • Harrison AA, Liem YTB, Markou A (2001) Fluoxetine combined with a serotonin-1A receptor antagonist reversed reward deficits observed during nicotine and amphetamine withdrawal in rats. Neuropsychopharmacology 25:55–71

    Article  PubMed  CAS  Google Scholar 

  • Hennings EC, Kiss JP, Vizi ES (1997) Nicotinic acetylcholine receptor antagonist effect of fluoxetine in rat hippocampal slices. Brain Res 759:292–294

    Article  PubMed  CAS  Google Scholar 

  • Hoffman AF, Gerhardt GA (1998) In vivo electrochemical studies of dopamine clearance in the rat substantia nigra: effects of locally applied uptake inhibitors and unilateral 6-hydroxydopamine lesions. J Neurochem 70:179–189

    Article  PubMed  CAS  Google Scholar 

  • Hughes JR, Gust SW, Skoog K, Keenan RM, Fenwick JW (1991) Symptoms of tobacco withdrawal: a replication and extension. Arch Gen Psychiatry 48:52–59

    PubMed  CAS  Google Scholar 

  • Hurt RD, Sachs DP, Glover ED, Offord KP, Johnston JA, Dale LC et al (1997) A comparison of sustained-release bupropion and placebo for smoking cessation. N Engl J Med 337:1195–1202

    Article  PubMed  CAS  Google Scholar 

  • Izaguirre V, Fernandez-Fernandez JM, Cena V, Gonzalez-Garcia C (1997) Tricyclic antidepressants block cholinergic nicotinic receptors and ATP secretion in bovine chromaffin cells. FEBS Lett 418:39–42

    Article  PubMed  CAS  Google Scholar 

  • Jorenby DE, Leischow SJ, Nides MA, Rennard SI, Johnston JA, Hughes AR et al (1999) A controlled trial of sustained-release bupropion, a nicotine patch, or both for smoking cessation. N Engl J Med 340:685–691

    Article  PubMed  CAS  Google Scholar 

  • Kenny PJ, Markou A (2005) Conditioned nicotine withdrawal profoundly decreases the activity of brain reward systems. J Neurosci 25:6208–6212

    Article  PubMed  CAS  Google Scholar 

  • Kokkinidis L, Zacharko RM, Predy PA (1980) Post-amphetamine depression of self-stimulation responding from the substantia nigra: reversal by tricyclic antidepressants. Pharmacol Biochem Behav 13:379–383

    Article  PubMed  CAS  Google Scholar 

  • Koob GF, Stinus L, Le Moal M, Bloom FE (1989) Opponent process theory of motivation: neurobiological evidence from studies of opiate dependence. Neurosci Biobehav Rev 13:135–140

    Article  PubMed  CAS  Google Scholar 

  • Kornetsky C, Esposito RU (1979) Euphorigenic drugs: effects on the reward pathways of the brain. Fed Proc 38:2473–2476

    PubMed  CAS  Google Scholar 

  • Lahmame A, Armario A (1996) Differential responsiveness of inbred strains of rats to antidepressants in the forced swimming test: are Wistar Kyoto rats an animal model of subsensitivity to antidepressants? Psychopharmacology 123(2):191–198

    Article  PubMed  CAS  Google Scholar 

  • Learned-Coughlin SM, Bergstrom M, Savitcheva I, Ascher J, Schmith VD, Langstrom B (2003) In vivo activity of bupropion at the human dopamine transporter as measured by positron emission tomography. Biol Psychiatry 54:800–805

    Article  PubMed  CAS  Google Scholar 

  • Lerman C, LeSage MG, Perkins KA, O’Malley SS, Siegel SJ, Benowitz NL, Corrigall WA (2007) Translational research in medication development for nicotine dependence. Nat Rev Drug Discov 6(9):746–762

    Article  PubMed  CAS  Google Scholar 

  • Lucki I, Frazer A (1985) Performance and extinction of lever press behavior following chronic administration of desipramine to rats. Psychopharmacol 85(3):253–259

    Article  CAS  Google Scholar 

  • Malin DH, Lake JR, Newlin-Maultsby P, Roberts LK, Lanier JG, Carter VA et al (1992) Rodent model of nicotine abstinence syndrome. Pharmacol Biochem Behav 43:779–784

    Article  PubMed  CAS  Google Scholar 

  • Markou A, Koob GF (1992) Construct validity of a self-stimulation threshold paradigm: effects of reward and performance manipulations. Physiol Behav 51:111–119

    Article  PubMed  CAS  Google Scholar 

  • Markou A, Hauger RL, Koob GF (1992) Desmethylimipramine attenuates cocaine withdrawal in rats. Psychopharmacology 109:305–314

    Article  PubMed  CAS  Google Scholar 

  • Markou A, Weiss F, Gold LH, Caine SB, Schulteis G, Koob GF (1993) Animal models of drug craving. Psychopharmacology 112:163–182

    Article  PubMed  CAS  Google Scholar 

  • Markou A, Kosten TR, Koob GF (1998) Neurobiological similarities in depression and drug dependence: a self-medication hypothesis. Neuropsychopharmacology 18:135–174

    Article  PubMed  CAS  Google Scholar 

  • Mateo Y, Fernandez-Pastor B, Meana JJ (2001) Acute and chronic effects of desipramine and clorgyline on α2-adrenoceptors regulating noradrenergic transmission in the rat brain: a dual-probe microdialysis study. Br J Pharmacol 133:1362–1370

    Article  PubMed  CAS  Google Scholar 

  • Meyer JH, Goulding VS, Wilson AA, Hussey D, Christensen BK, Houle S (2002) Bupropion occupancy of the dopamine transporter is low during clinical treatment. Psychopharmacology 163:102–105

    Article  PubMed  CAS  Google Scholar 

  • Miller DK, Wong EHF, Chesnut MD, Dwoskin LP (2002) Reboxetine: functional inhibition of monoamine transporters and nicotinic acetylcholine receptors. J Pharmacol Exp Ther 302:687–695

    Article  PubMed  CAS  Google Scholar 

  • Mjellem N, Lund A, Hole K (1993) Reduction of NMDA-induced behaviour after acute and chronic administration of desipramine in mice. Neuropharmacology 32:591–595

    Article  PubMed  CAS  Google Scholar 

  • National Institutes of Health (1996) Guide for the care and use of laboratory animals. National Academy Press, Washington, DC

    Google Scholar 

  • Neumeister A, Young T, Stastny J (2004) Implications of genetic research on the role of the serotonin in depression: emphasis on the serotonin type 1A receptor and the serotonin transporter. Psychopharmacology (Berl) 174(4):512–524

    Article  CAS  Google Scholar 

  • Nurse B, Russell VA, Taljaard JJ (1985) Effect of chronic desipramine treatment on adrenoceptor modulation of [3H]dopamine release from rat nucleus accumbens slices. Brain Res 334:235–242

    Article  PubMed  CAS  Google Scholar 

  • Orzack MH, Cole JO, Friedman L, Bird M, MeEachen J (1986) Weight changes in antidepressants: a comparison of amitriptyline and trazodone. Neuropsychobiology 15(S1):28–30

    Article  Google Scholar 

  • Paterson NE, Markou A (2007) Design of animal models and treatments for addiction and depression co-morbidity. Neurotox Res 11(1):1–32

    PubMed  CAS  Google Scholar 

  • Paterson NE, Semenova S, Gasparini F, Markou A (2003) The mGluR5 antagonist MPEP decreased nicotine self-administration in rats and mice. Psychopharmacology 167:257–264

    PubMed  CAS  Google Scholar 

  • Paterson NE, Froestl W, Markou A (2004) The GABAB receptor agonists baclofen and CGP44532 decrease nicotine self-administration in the rat. Psychopharmacology 172:179–186

    Article  PubMed  CAS  Google Scholar 

  • Paterson NE, Balfour DJ, Markou A (2007) Chronic bupropion attenuated the anhedonic component of nicotine withdrawal in rats via inhibition of dopamine reuptake in the nucleus accumbens shell. Eur J Neurosci 25:3099–3108

    Article  PubMed  Google Scholar 

  • Pellegrino LJ, Pellegrino AS, Cushman AJ (1979) A stereotaxic atlas of the rat brain. 2nd edn. Plenum Press, New York

  • Petrie EC, Veith RC, Szot P (1998) Bupropion and desipramine increase dopamine transporter mRNA expression in the ventral tegmental area/substantia nigra of rat brain. Prog Neuropsychopharmacol Biol Psychiatry 22:845–856

    Article  PubMed  CAS  Google Scholar 

  • Phillips G, Willner P, Sampson D, Nunn J, Muscat R (1991) Time-, schedule-, and reinforcer-dependent effects of pimozide and amphetamine. Psychopharmacology 104:125–131

    Article  PubMed  CAS  Google Scholar 

  • Piasecki TM, Jorenby DE, Smith SS, Fiore MC, Baker TB (2003) Smoking withdrawal dynamics: II. Improved tests of withdrawal-relapse relations. J Abnorm Psychol 112:14–27

    Article  PubMed  Google Scholar 

  • Picciotto MR, Zoli M, Rimondini R, Lena C, Marubio LM, Pich EM et al (1998) Acetylcholine receptors containing the β2 subunit are involved in the reinforcing properties of nicotine. Nature 391:173–177

    Article  PubMed  CAS  Google Scholar 

  • Prochazka AV, Petty TL, Nett L, Silvers GW, Sachs DP, Rennard SI et al (1992) Transdermal clonidine reduced some withdrawal symptoms but did not increase smoking cessation. Arch Intern Med 152:2065–2069

    Article  PubMed  CAS  Google Scholar 

  • Prochazka AV, Weaver MJ, Keller RT, Fryer GE, Licari PA, Lofaso D (1998) A randomized trial of nortriptyline for smoking cessation. Arch Intern Med 158:2035–2039

    Article  PubMed  CAS  Google Scholar 

  • Proctor RN (2004) The global smoking epidemic: a history and status report. Clin Lung Cancer 5:371–376

    PubMed  Google Scholar 

  • Quattrocki E, Baird A, Yurgulen-Todd D (2000) Biological aspects of the link between smoking and depression. Harv Rev Psychiatry 8:99–110

    Article  PubMed  CAS  Google Scholar 

  • Rana B, McMorn SO, Reeve HL, Wyatt CN, Vaughan PF, Peers C (1993) Inhibition of neuronal nicotinic acetylcholine receptors by imipramine and desipramine. Eur J Pharmacol 250:247–251

    Article  PubMed  CAS  Google Scholar 

  • Rauhut AS, Mullins SN, Dwoskin LP, Bardo MT (2002) Reboxetine: attenuation of nicotine self-administration in rats. J Pharmacol Exp Ther 303:664–672

    Article  PubMed  CAS  Google Scholar 

  • Ressler JB, Nemeroff CB (2000) Role of serotonergic and noradrenergic systems in the pathophysiology of depression and anxiety disorders. Depress Anxiety 12(Suppl. 1):2–19

    Article  PubMed  Google Scholar 

  • Richelson E, Pfenning M (1984) Blockade by antidepressants and related compounds of biogenic amine uptake into rat brain synaptosomes: most antidepressants selectively block norepinephrine release. Eur J Pharmacol 104:277–286

    Article  PubMed  CAS  Google Scholar 

  • Ridley RM, Baker HF, Oven F, Cross AJ, Crow TJ (1982) Behavioral and biochemical effects of chronic amphetamine treatment in the vervet monkey. Psychopharmacol 78:245–251

    Article  CAS  Google Scholar 

  • Sanchez C, Hyttel J (1999) Comparison of the effects of antidepressants and their metabolites on reuptake of biogenic amines and on receptor binding. Cell Mol Neurobiol 19(4):467–489

    Article  PubMed  CAS  Google Scholar 

  • Sernagor E, Kuhn D, Vylicky L Jr, Mayer ML (1989) Open channel block of NMDA receptor responses evoked by tricyclics antidepressants. Neuron 2:1221–1227

    Article  PubMed  CAS  Google Scholar 

  • Slemmer JE, Martin BR, Damaj MI (2000) Bupropion is a nicotinic antagonist. J Pharmacol Exp Ther 295:321–327

    PubMed  CAS  Google Scholar 

  • Solomon RL, Corbit JD (1973) An opponent-process theory of motivation: II. Cigarette addiction. J Abnorm Psychol 81:158–171

    Article  PubMed  CAS  Google Scholar 

  • Stolerman IP, Jarvis MJ (1995) The scientific case that nicotine is addictive. Psychopharmacol 117:2–10

    Article  CAS  Google Scholar 

  • Stolerman IP, Shoaib M (1991) The neurobiology of tobacco addiction. Trends Pharmacol Sci 12:467–473

    Article  PubMed  CAS  Google Scholar 

  • Tremblay LK, Naranjo CA, Graham SJ, Hermann N, Mayberg HS, Hevenor S, Busto UE (2005) Functional neuroanatomical substrates of altered reward processing in major depressive disorder revealed by a dopaminergic probe. Arch Gen Psychiatry 62(11):1228–1236

    Article  PubMed  Google Scholar 

  • Valentino DA, Riccitelli AJ, Dufresne RL (1987) Chronic DMI reduces thresholds for brain stimulation reward in the rat. Pharmacol Biochem Behav 39:1–4

    Article  Google Scholar 

  • Wagena EJ, Knipschild P, Zeegers MP (2005) Should nortriptyline be used as a first-line aid to help smokers quit? Results from a systematic review and meta-analysis. Addiction 100:317–326

    Article  PubMed  CAS  Google Scholar 

  • Watkins SS, Stinus L, Koob GF, Markou A (2000) Reward and somatic changes during precipitated nicotine withdrawal in rats: centrally and peripherally mediated effects. J Pharmacol Exp Ther 292:1053–1064

    CAS  Google Scholar 

  • West RJ, Hajek P, Belcher M (1989) Severity of withdrawal symptoms as a predictor of an attempt to quit smoking. Psychol Med 19:981–985

    Article  PubMed  CAS  Google Scholar 

  • Winer BJ (1971) Statistical principles in experimental design, 2nd edn. McGraw-Hill, New York, NY

    Google Scholar 

  • Wing VC, Shoaib M (2007) Examining the clinical efficacy of bupropion and nortriptyline as smoking cessation agents in a rodent model of nicotine withdrawal. Psychopharmacology (Berl) 195(3):303–313

    Article  CAS  Google Scholar 

  • Yamamoto BK, Novotney S (1998) Regulation of extracellular dopamine by the norepinephrine transporter. J Neurochem 71(1):274–280

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Mr. Michael Arends for editorial assistance and Mrs. Jessica Benedict and Mr. Randy Ares for technical assistance. The authors would also like to thank Dr. John F. Cryan for initial work with the effects of acute desipramine during amphetamine withdrawal in our laboratory. NEP was supported by Post-Doctoral Fellowship 14-FT0056 from the Tobacco Related Disease Research Program (State of California) and a research grant from The Peter F. McManus Charitable Trust. This work was supported by National Institute of Mental Health grants R01 MH62527 and U01 MH69062 to AM. The authors report no actual or potential financial conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Athina Markou.

Additional information

Paterson and Semenova contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Paterson, N.E., Semenova, S. & Markou, A. The effects of chronic versus acute desipramine on nicotine withdrawal and nicotine self-administration in the rat. Psychopharmacology 198, 351–362 (2008). https://doi.org/10.1007/s00213-008-1144-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-008-1144-5

Keywords

Navigation