Skip to main content
Log in

Spatial deficits in a mouse model of Parkinson disease

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

Accumulating evidence in humans demonstrated that visuo-spatial deficits are the most consistently reported cognitive abnormalities in Parkinson disease (PD). These deficits have been generally attributed to cortical dopamine degeneration. However, more recent evidence suggests that dopamine loss in the striatum is responsible for the visuo-spatial abnormalities in PD. Studies based on animal models of PD did not specifically address this question.

Objectives

Thus, the first goal of this study was to analyze the role of dopamine within the dorsal striatum in spatial memory. We tested bilateral 6-OHDA striatal lesioned CD1 mice in an object–place association spatial task. Furthermore, to see whether the effects were selective for spatial information, we measured how the 6-OHDA-lesioned animals responded to a non-spatial change and learned in the one-trial inhibitory avoidance task.

Results

The results demonstrated that bilateral (approximately 75%) dopamine depletion of the striatum impaired spatial change discrimination. On the contrary, no effect of the lesion was observed on non-spatial novelty detection or on passive avoidance learning.

Conclusions

These results confirm that dopamine depletion is accompanied by cognitive deficits and demonstrate that striatal dopamine dysfunction is sufficient to induce spatial information processing deficits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Berger HJ, Cools AR, Horstink MW, Oyen WJ, Verhoeven EW, van der Werf SP (2004) Striatal dopamine and learning strategy-an (123)I-FP-CIT SPECT study. Neuropsychologia 42:1071–1078

    Article  PubMed  Google Scholar 

  • Boller F, Passafiume D, Keefe NC, Rogers K, Morrow L, Kim Y (1984) Visuospatial impairment in Parkinson’s disease. Role of perceptual and motor factors. Arch Neurol 41:485–490

    PubMed  CAS  Google Scholar 

  • Bracs PU, Gregory P, Jackson DM (1984) Passive avoidance in rats: disruption by dopamine applied to the nucleus accumbens. Psychopharmacology (Berl) 83:70–75

    Article  CAS  Google Scholar 

  • Breen EK (1993) Recall and recognition memory in Parkinson’s disease. Cortex 29:91–102

    PubMed  CAS  Google Scholar 

  • Buytenhuijs EL, Berger HJ, Van Spaendonck KP, Horstink MW, Borm GF, Cools AR (1994) Memory and learning strategies in patients with Parkinson’s disease. Neuropsychologia 32(3):335–342

    Article  PubMed  CAS  Google Scholar 

  • Coccurello R, Adriani W, Oliverio A, Mele A (2000) Effect of intra-accumbens dopamine receptor agents on reactivity to spatial and non-spatial changes in mice. Psychopharmacology 152(2):189–199

    Article  PubMed  CAS  Google Scholar 

  • Collins P, Wilkinson LS, Everitt BJ, Robbins TW, Roberts AC (2000) The effect of dopamine depletion from the caudate nucleus of the common marmoset (Callithrix jacchus) on tests of prefrontal cognitive function. Behav Neurosci 114:3–17

    Article  PubMed  CAS  Google Scholar 

  • Cools R, Stefanova E, Barker RA, Robbins TW, Owen AM (2002) Dopaminergic modulation of high-level cognition in Parkinson’s disease: the role of the prefrontal cortex revealed by PET. Brain 125(Pt 3):584–594

    Article  PubMed  Google Scholar 

  • Cools R, Lewis SJ, Clark L, Barker RA, Robbins TW (2007) l-DOPA disrupts activity in the nucleus accumbens during reversal learning in Parkinson’s disease. Neuropsychopharmacology 32(1):180–189

    Article  PubMed  CAS  Google Scholar 

  • Courtiere A, Hardouin J, Locatelli V, Turle-Lorenzo N, Amalric M, Vidal F, Hasbroucq T (2005) Selective effects of partial striatal 6-OHDA lesions on information processing in the rat. Eur J Neurosci 21:1973–1983

    Article  PubMed  Google Scholar 

  • Crofts HS, Dalley JW, Collins P, Van Denderen JC, Everitt BJ, Robbins TW, Roberts AC (2001) Differential effects of 6-OHDA lesions of the frontal cortex and caudate nucleus on the ability to acquire an attentional set. Cereb Cortex 11:1015–1026

    Article  PubMed  CAS  Google Scholar 

  • De Leonibus E, Costantini VJ, Castellano C, Ferretti V, Oliverio A, Mele A (2003) Distinct roles of the different ionotropic glutamate receptors within the nucleus accumbens in passive-avoidance learning and memory in mice. Eur J Neurosci 18:2365–2373

    Article  PubMed  Google Scholar 

  • De Leonibus E, Oliverio A, Mele A (2005) A study on the role of the dorsal striatum and the nucleus accumbens in allocentric and egocentric spatial memory consolidation. Learn Memory 12:491–503

    Article  Google Scholar 

  • De Leonibus E, Verheij MM, Mele A, Cools A (2006) Distinct kinds of novelty processing differentially increase extracellular dopamine in different brain regions. Eur J Neurosci 23:1332–1340

    Article  PubMed  Google Scholar 

  • Dubois B, Pillon B (1997) Cognitive deficits in Parkinson’s disease. J Neurol 244:2–8

    Article  PubMed  CAS  Google Scholar 

  • Farina E, Gattellaro G, Pomati S, Magni E, Perretti A, Cannata AP, Nichelli P, Mariani C (2000) Researching a differential impairment of frontal functions and explicit memory in early Parkinson’s disease. Eur J Neurol 7:259–267

    Article  PubMed  CAS  Google Scholar 

  • Franklin BJ, Paxinos G (1997) The mouse brain in stereotaxic coordinates. Academic, San Diego, CA

    Google Scholar 

  • Giraudo MD, Gayraud D, Habib M (1997) Visuospatial ability of parkinsonians and elderly adults in location memory tasks. Brain Cogn 34:259–273

    Article  PubMed  CAS  Google Scholar 

  • Keitz M, Martin-Soelch C, Leenders KL (2003) Reward processing in the brain: a prerequisite for movement preparation? Neural Plast 10:121–128

    Article  PubMed  CAS  Google Scholar 

  • Lewis SJ, Cools R, Robbins TW, Dove A, Barker RA, Owen AM (2003) Using executive heterogeneity to explore the nature of working memory deficits in Parkinson’s disease. Neuropsychologia 41(6):645–654

    Article  PubMed  Google Scholar 

  • Lewis SJ, Slabosz A, Robbins TW, Barker RA, Owen AM (2004) Dopaminergic basis for deficits in working memory but not attentional set-shifting in Parkinson’s disease. Neuropsychologia 43:823–832

    Article  PubMed  Google Scholar 

  • Lorenzini CA, Baldi E, Bucherelli C, Tassoni G (1995) Time-dependent deficits of rat’s memory consolidation induced by tetrodotoxin injections into the caudate-putamen, nucleus accumbens, and globus pallidus. Neurobiol Learn Mem 63:87–93

    Article  PubMed  CAS  Google Scholar 

  • Miyoshi E, Wietzikoski S, Camplessei M, Silveira R, Takahashi RN, Da Cunha C (2002) Impaired learning in a spatial working memory version and in a cued version of the water maze in rats with MPTP-induced mesencephalic dopaminergic lesions. Brain Res Bull 58:41–47

    Article  PubMed  CAS  Google Scholar 

  • Mollion H, Ventre-Dominey J, Dominey PF, Broussolle E (2003) Dissociable effects of dopaminergic therapy on spatial versus non-spatial working memory in Parkinson’s disease. Neuropsychologia 41:1442–1451

    Article  PubMed  CAS  Google Scholar 

  • Mura A, Feldon J (2003) Spatial learning in rats is impaired after degeneration of the nigrostriatal dopaminergic system. Mov Disord 18:860–871

    Article  PubMed  Google Scholar 

  • Owen AM, James M, Leigh PN, Summers BA, Marsden CD, Quinn NP, Lance KW, Robbins TW(1992) Fronto-striatal cognitive deficits at different stages of Parkinson’s disease. Brain 115:1727–1751

    Article  PubMed  Google Scholar 

  • Owen AM, Roberts AC, Hodges JR, Summers BA, Polkey CE, Robbins TW (1993) Contrasting mechanisms of impaired attentional set-shifting in patients with frontal lobe damage or Parkinson’s disease. Brain 116:1159–1175

    Article  PubMed  Google Scholar 

  • Owen AM, Iddon JL, Hodges JR, Summers BA, Robbins TW (1997) Spatial and non-spatial working memory at different stages of Parkinson’s disease. Neuropsychologia 35:519–532

    Article  PubMed  CAS  Google Scholar 

  • Owen AM, Doyon J, Dagher A, Sadikot A, Evans AC (1998) Abnormal basal ganglia outflow in Parkinson’s disease identified with PET. Implications for higher cortical functions. Brain 121(Pt 5):949–965

    Article  PubMed  Google Scholar 

  • Pillon B, Ertle S, Deweer B, Sarazin M, Agid Y, Dubois B (1996) Memory for spatial location is affected in Parkinson’s disease. Neuropsychologia 34:77–85

    Article  PubMed  CAS  Google Scholar 

  • Pillon B, Ertle S, Deweer B, Bonnet AM, Vidailhet M, Dubois B (1997) Memory for spatial location in ‘de novo’ parkinsonian patients. Neuropsychologia 35:221–228

    Article  PubMed  CAS  Google Scholar 

  • Postle BR, Locascio JJ, Corkin S, Growdon JH (1997) The time course of spatial and object learning in Parkinson’s disease. Neuropsychologia 35(10):1413–1422

    Article  PubMed  CAS  Google Scholar 

  • Puglisi-Allegra S, Cabib S, Pascucci T, Ventura R, Cali F, Romano V (2000) Dramatic brain aminergic deficit in a genetic mouse model of phenylketonuria. Neuroreport 27:1361–1364

    Article  Google Scholar 

  • Reyes Vazquez C, Zarco-Coronado I, Brust-Carmona H (1978) Effects of intracaudate microinjections of 6-hydroxydopamine upon the suppression of lever pressing and upon passive avoidance conditioning in cats. Pharmacol Biochem Behav 9:747–751

    Article  PubMed  CAS  Google Scholar 

  • Rinaldi A, Mandillo S, Oliverio A, Mele A (2007) D1 and D2 receptor antagonist injections in the prefrontal cortex selectively impair spatial learning in mice. Neuropsychopharmacology 32(2):309–319

    Article  PubMed  CAS  Google Scholar 

  • Robbins TW, Everitt BJ (1996) Neurobehavioural mechanisms of reward and motivation. Curr Opin Neurobio 6:228–236

    Article  CAS  Google Scholar 

  • Roesler R, Vianna MR, Schroder N, Ferreira MB, Quevedo J (2006) Aversive learning under different training conditions: effects of NMDA receptor blockade in area CA1 of the hippocampus. Neurochem Res 31:679–683

    Article  PubMed  CAS  Google Scholar 

  • Roullet P, Sargolini F, Oliverio A, Mele A (2001) NMDA and AMPA antagonist infusions into the ventral striatum impair different steps of spatial information processing in a nonassociative task in mice. J Neurosci 21:2143–2149

    PubMed  CAS  Google Scholar 

  • Sahakian BJ, Morris RG, Evenden JL, Heald A, Levy R, Philpot M (1988) A comparative study of visuospatial memory and learning in Alzheimer-type dementia and Parkinson’s disease. Brain 111:695–718

    Article  PubMed  Google Scholar 

  • Sargolini F, Roullet P, Oliverio A, Mele A (1999) Effects of lesions to the glutamatergic afferents to the nucleus accumbens in the modulation of reactivity to spatial and non-spatial novelty in mice. Neuroscience 93:855–867

    Article  PubMed  CAS  Google Scholar 

  • Smith-Roe SL, Sadeghian K, Kelley AE (1999) Spatial learning and performance in the radial maze is impaired after N-methyl-d-aspartate (NMDA) receptor blockade in striatal subregions. Behav Neurosci 113:703–717

    Article  PubMed  CAS  Google Scholar 

  • Weingartner H, Burns S, Diebel R, LeWitt PA (1984) Cognitive impairments in Parkinson’s disease: distinguishing between effort-demanding and automatic cognitive processes. Psychiatry Res 11:223–235

    Article  PubMed  CAS  Google Scholar 

  • Whishaw IQ, Dunnett SB (1985) Dopamine depletion, stimulation or blockade in the rat disrupts spatial navigation and locomotion dependent upon beacon or distal cues. Behav Brain Res 18:11–29

    Article  PubMed  CAS  Google Scholar 

  • White NM, Salinas JA (2003) Mnemonic functions of dorsal striatum and hippocampus in aversive conditioning. Behav Brain Res 142:99–107

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Dr. Arianna Rinaldi for her assistance with the TH staining. The present study has been supported by a Galileo grant (to A.M. and M.A.), P.R.I.N. and F.I.R.B. grants from M.I.U.R. to A.O. to A.M. and a D.C.M.C grant from A.S.I. to A.O. and A.M. Every possible effort was made to minimize animal suffering, and all procedures were in strict accordance with the European Communities Council directives (86/609/EEC) and regulations on the use of animals in research and NIH guidelines on animal care.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elvira De Leonibus.

Rights and permissions

Reprints and permissions

About this article

Cite this article

De Leonibus, E., Pascucci, T., Lopez, S. et al. Spatial deficits in a mouse model of Parkinson disease. Psychopharmacology 194, 517–525 (2007). https://doi.org/10.1007/s00213-007-0862-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-007-0862-4

Keywords

Navigation