Skip to main content
Log in

Strongly elliptic pseudodifferential equations on the sphere with radial basis functions

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

Spherical radial basis functions are used to define approximate solutions to strongly elliptic pseudodifferential equations on the unit sphere. These equations arise from geodesy. The approximate solutions are found by the Galerkin and collocation methods. A salient feature of the paper is a unified theory for error analysis of both approximation methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arnold, D.N., Wendland, W.L.: On the asymptotic convergence of collocation methods. Math. Comp. 41, 349–381 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  2. Babuška, I., Banerjee, U., Osborn J.E.: Meshless and generalized finite element methods: a survey of some major results. In: Meshfree Methods for Partial Differential Equations (Bonn, 2001), volume 26 of Lecture Notes in Computational Science and Engineering, pp. 1–20. Springer, Berlin (2003)

  3. Chen, D., Menegatto, V.A., Sun, X.: A necessary and sufficient condition for strictly positive definite functions on spheres. Proc. Am. Math. Soc. 131, 2733–2740 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  4. Costabel, M., Stephan, E.P.: On the convergence of collocation methods for boundary integral equations on polygons. Math. Comp. 49, 461–478 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  5. Douglas Jr, J., Dupont, T.: A finite element collocation method for quasilinear parabolic equations. Math. Comp. 27, 17–28 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  6. Freeden, W., Gervens, T., Schreiner, M.: Constructive Approximation on the Sphere with Applications to Geomathematics. Oxford University Press, Oxford (1998)

    MATH  Google Scholar 

  7. Grafarend, E.W., Krumm, F.W., Schwarze, V.S. (eds.): Geodesy: The Challenge of the 3rd Millennium. Springer, Berlin (2003)

  8. Hörmander, L.: Pseudodifferential operators. Comm. Pure Appl. Math. 18, 501–517 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  9. Hsiao, G.C., Wendland, W.L.: Boundary Integral Equations, Volume 164 of Applied Mathematical Sciences. Springer, Berlin (2008)

  10. Kansa, E.: Multiquadratics—a scattered data approximation scheme with applications to computational fluid-dynamics ii: solutions to parabolic, hyperbolic and elliptic partial differential equations. Comput. Math. 19, 147–161 (1990)

    MathSciNet  MATH  Google Scholar 

  11. Kohn, J., Nirenberg, L.: On the algebra of pseudodifferential operators. Comm. Pure Appl. Math. 18, 269–305 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  12. McLean, W.: Strongly Elliptic Systems and Boundary Integral Equations. CUP, Cambridge (2000)

    MATH  Google Scholar 

  13. Melenk, J.M.: On approximation in Meshless Methods. Frontiers of Numerical Analysis. Universitext, pp. 65–141. Springer, Berlin (2005)

  14. Morton, T.M.: Error Bounds for Solving Pseudodifferential Equations on Spheres by Collocation with Zonal Kernels. PhD thesis, Graduate School, Vanderbilt University, Nashville (2000)

  15. Morton, T.M.: Improved error bounds for solving pseudodifferential equations on spheres by collocation with zonal kernels. In: Trends in Approximation Theory (Nashville, TN, 2000), Innov. Appl. Math., pp. 317–326. Vanderbilt Univ. Press, Nashville (2001)

  16. Morton, T.M., Neamtu, M.: Error bounds for solving pseudodifferential equations on spheres. J. Approx. Theory 114, 242–268 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  17. Müller, C.: Spherical Harmonics. Lecture Notes in Mathematics, vol. 17. Springer, Berlin (1966)

  18. Narcowich, F.J., Sun, X., Ward, J.D., Wendland, H.: Direct and inverse Sobolev error estimates for scattered data interpolation via spherical basis functions. Found. Comput. Math. 7, 369–390 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  19. Narcowich, F.J., Ward, J.D.: Scattered data interpolation on spheres: error estimates and locally supported basis functions. SIAM J. Math. Anal. 33, 1393–1410 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  20. Nédélec, J.-C.: Acoustic and Electromagnetic Equations. Springer, New York (2000)

    Google Scholar 

  21. Petersen, B.E.: Introduction to the Fourier Transform & Pseudodifferential Operators, Volume 19 of Monographs and Studies in Mathematics. Pitman (Advanced Publishing Program), Boston (1983)

  22. Pham, T.D., Tran, T.: Solutions to pseudodifferential equations using spherical radial basis functions. Bull. Aust. Math. Soc. 79, 473–485 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  23. Pham, T.D., Tran, T., Le Gia, Q.T.: Numerical solutions to a boundary-integral equation with spherical radial basis functions. In: Mercer, G.N., Roberts, A.J. (eds.) Proceedings of the 14th Biennial Computational Techniques and Applications Conference, CTAC-2008, volume 50 of ANZIAM J., pp. C266–C281 (2008). http://anziamj.austms.org.au/ojs/index.php/ANZIAMJ/article/view/1464

  24. Schoenberg, I.J.: Positive definite function on spheres. Duke Math. J. 9, 96–108 (1942)

    Article  MathSciNet  MATH  Google Scholar 

  25. Svensson, S.: Pseudodifferential operators—a new approach to the boundary problems of physical geodesy. Manuscr. Geod. 8, 1–40 (1983)

    MathSciNet  MATH  Google Scholar 

  26. Tran, T., Le Gia, Q.T., Sloan, I.H., Stephan, E.P.: Boundary integral equations on the sphere with radial basis functions: error analysis. Appl. Numer. Math. 59, 2857–2871 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  27. Tran, T., Le Gia, Q.T., Sloan, I.H., Stephan, E.P.: Preconditioners for pseudodifferential equations on the sphere with radial basis functions. Numer. Math. 115, 141–163 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  28. Wendland, H.: Piecewise polynomial, positive definite and compactly supported radial functions of minimal degree. Adv. Comp. Math. 4, 389–396 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  29. Wendland, H.: Meshless Galerkin methods using radial basis functions. Math. Comp. 68, 1521–1531 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  30. Wendland, H.: Scattered Data Approximation. Cambridge University Press, Cambridge (2005)

    MATH  Google Scholar 

  31. Xu, Y., Cheney, E.W.: Strictly positive definite functions on spheres. Proc. Am. Math. Soc. 116, 977–981 (1992)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Dr. Thong Le Gia for providing some parts of the code which are used in the numerical experiments. The first author is supported by the University International Postgraduate Award offered by the University of New South Wales. The second author is partially supported by the grant FRG PS17166.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Tran.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pham, T.D., Tran, T. Strongly elliptic pseudodifferential equations on the sphere with radial basis functions. Numer. Math. 128, 589–614 (2014). https://doi.org/10.1007/s00211-014-0614-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-014-0614-4

Mathematics Subject Classification

Navigation