Skip to main content
Log in

Interpolation of harmonic functions based on Radon projections

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

We consider an algebraic method for reconstruction of a harmonic function in the unit disk via a finite number of values of its Radon projections. The approach is to seek a harmonic polynomial which matches given values of Radon projections along some chords of the unit circle. We prove an analogue of the famous Marr’s formula for computing the Radon projection of the basis orthogonal polynomials in our setting of harmonic polynomials. Using this result, we show unique solvability for a family of schemes where all chords are chosen at equal distance to the origin. For the special case of chords forming a regular convex polygon, we prove error estimates on the unit circle and in the unit disk. We present an efficient reconstruction algorithm which is robust with respect to noise in the input data and provide numerical examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Bojanov, B., Georgieva, I.: Interpolation by bivariate polynomials based on Radon projections. Studia Math. 162, 141–160 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  2. Bojanov, B., Jayne, C.: Surface approximation by piecewise harmonic functions. In: Nikolov, G., Uluchev, R. (eds.) Constructive Theory of Functions, Sozopol 2010: In memory of Borislav Bojanov, pp. 46–52. Prof. Marin Drinov Academic Publishing House, Sofia (2012)

  3. Bojanov, B., Petrova, G.: Numerical integration over a disc. A new Gaussian cubature formula. Numer. Math. 80, 39–59 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  4. Bojanov, B., Petrova, G.: Uniqueness of the Gaussian cubature for a ball. J. Approx. Theory 104, 21–44 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  5. Bojanov, B., Xu, Y.: Reconstruction of a bivariate polynomial from its Radon projections. SIAM J. Math. Anal. 37, 238–250 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  6. Cavaretta, A.S., Goodman, T.N.T., Micchelli, C.A., Sharma, A.: Multivariate interpolation and the Radon transform, part III: Lagrange representation. In: Canadian Mathematical Society Conference Proceedings, pp. 37–50. American Mathematical Society, Providence (1982)

  7. Cavaretta, A.S., Micchelli, C.A., Sharma, A.: Multivariate interpolation and the Radon transform. Part I. Math. Z. 174, 263–279 (1980)

    MATH  MathSciNet  Google Scholar 

  8. Cavaretta, A.S., Micchelli, C.A., Sharma, A.: Multivariate interpolation and the Radon transform, part II. In: Quantitive Approximation, pp. 49–62. Academic Press, New York (1980)

  9. Davison, M., Grunbaum, F.: Tomographic reconstruction with arbitrary directions. Comm. Pure Appl. Math. 34, 77–120 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  10. Gasca, M., Sauer, T.: Polynomial interpolation in several variables. Adv. Comput. Math. 12, 377–410 (2000). doi:10.1023/A:1018981505752

    Article  MATH  MathSciNet  Google Scholar 

  11. Georgieva, I., Hofreither, C., Koutschan, C., Pillwein, V., Thanatipanonda, T.: Harmonic interpolation based on Radon projections along the sides of regular polygons. Cent. Eur. J. Math. 11(4), 609–620 (2013). doi:10.2478/s11533-012-0160-1. Also available as Technical Report 2011–12 in the series of the DK Computational Mathematics Linz. https://www.dk-compmath.jku.at/publications/dk-reports/2011-10-20/view

    Google Scholar 

  12. Georgieva, I., Hofreither, C., Uluchev, R.: Interpolation of mixed type data by bivariate polynomials. In: Nikolov, G., Uluchev, R. (eds.) Constructive Theory of Functions, Sozopol 2010: In memory of Borislav Bojanov, pp. 93–107. Prof. Marin Drinov Academic Publishing House, Sofia (2012). Also available as Technical Report 2010–14 in the series of the DK Computational Mathematics Linz. https://www.dk-compmath.jku.at/publications/dk-reports/2010-12-10/view

  13. Georgieva, I., Ismail, S.: On recovering of a bivariate polynomial from its Radon projections. In: Bojanov, B. (ed.) Constructive Theory of Functions, Varna 2005, pp. 127–134. Marin Drinov Academic Publishing House, Sofia (2006)

    Google Scholar 

  14. Georgieva, I., Uluchev, R.: Smoothing of Radon projections type of data by bivariate polynomials. J. Comput. Appl. Math. 215, 167–181 (2008). doi:10.1016/j.cam.2007.04.002. http://portal.acm.org/citation.cfm?id=1349899.1350213

  15. Georgieva, I., Uluchev, R.: Surface reconstruction and Lagrange basis polynomials. In: Lirkov, I., Margenov, S., Waśniewski, J. (eds.) Large-Scale Scientific Computing 2007, pp. 670–678. Springer, Berlin (2008). http://dx.doi.org/10.1007/978-3-540-78827-0_77

  16. Georgieva, I., Uluchev, R.: On interpolation in the unit disk based on both Radon projections and function values. In: Lirkov, I., Margenov, S., Waśniewski, J. (eds.) Large-Scale Scientific Computing 2009, pp. 747–755. Springer, Berlin (2010)

  17. Hakopian, H.: Multivariate divided differences and multivariate interpolation of Lagrange and Hermite type. J. Approx. Theory 34, 286–305 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  18. Hamaker, C., Solmon, D.: The angles between the null spaces of \(x\)-rays. J. Math. Anal. Appl. 62, 1–23 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  19. Jain, A.K.: Fundamentals of Digital Image Processing. In: Kailath, T. (ed.) Prentice Hall Information and System Sciences Series, 5th edn. Prentice Hall, Englewood Cliffs (1989)

  20. John, F.: Abhängigkeiten zwischen den Flächenintegralen einer stetigen Funktion. Math. Anal. 111, 541–559 (1935)

    Article  Google Scholar 

  21. Logan, B., Shepp, L.: Optimal reconstruction of a function from its projections. Duke Math. J. 42, 645–659 (1975)

    Article  MATH  MathSciNet  Google Scholar 

  22. Marr, R.: On the reconstruction of a function on a circular domain from a sampling of its line integrals. J. Math. Anal. Appl. 45, 357–374 (1974)

    Article  MATH  MathSciNet  Google Scholar 

  23. Natterer, F.: The mathematics of computerized tomography. In: Classics in Applied Mathematics, vol. 32. SIAM, Philadelphia (2001)

  24. Nikolov, G.: Cubature formulae for the disk using Radon projections. East J. Approx. 14, 401–410 (2008)

    MATH  MathSciNet  Google Scholar 

  25. Radon, J.: Über die Bestimmung von Funktionen durch ihre Integralwerte längs gewisser Mannigfaltigkeiten. Ber. Verch. Sächs. Akad. 69, 262–277 (1917)

    Google Scholar 

  26. Walsh, J.L.: The approximation of harmonic functions by harmonic polynomials and by harmonic rational functions. Bull. Am. Math. Soc 35(4), 499–544 (1929)

    Google Scholar 

  27. Zygmund, A.: Trigonometric Series. Cambridge Mathematical Library, 3rd edn. Cambridge University Press, Cambridge (2002)

Download references

Acknowledgments

The authors acknowledge the support by the Bulgarian National Science Fund through Grant DMU 03/17. The research of the first author was also supported by Bulgarian National Science Fund Grant DDVU 0230/11. The second author was supported by the project AComIn “Advanced Computing for Innovation”, Grant 316087, funded by the FP7 Capacity Programme “Research Potential of Convergence Regions”, and by the Austrian Science Fund (FWF): W1214-N15, project DK04.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Clemens Hofreither.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Georgieva, I., Hofreither, C. Interpolation of harmonic functions based on Radon projections. Numer. Math. 127, 423–445 (2014). https://doi.org/10.1007/s00211-013-0592-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-013-0592-y

Mathematics Subject Classification (2000)

Navigation