Skip to main content

Advertisement

Log in

Energy-conserved splitting FDTD methods for Maxwell’s equations

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

In this paper, two new energy-conserved splitting methods (EC-S-FDTDI and EC-S-FDTDII) for Maxwell’s equations in two dimensions are proposed. Both algorithms are energy-conserved, unconditionally stable and can be computed efficiently. The convergence results are analyzed based on the energy method, which show that the EC-S-FDTDI scheme is of first order in time and of second order in space, and the EC-S-FDTDII scheme is of second order both in time and space. We also obtain two identities of the discrete divergence of electric fields for these two schemes. For the EC-S-FDTDII scheme, we prove that the discrete divergence is of first order to approximate the exact divergence condition. Numerical dispersion analysis shows that these two schemes are non-dissipative. Numerical experiments confirm well the theoretical analysis results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Brekhovskikh L.M. (1980). Waves in Layered Media. Academic, New York

    MATH  Google Scholar 

  • Dai W. and Raja N. (1995). A new ADI scheme for solving three-dimensional parabolic equations with first-order derivatives and variable coefficients. J. Comput. Anal. Appl. 122: 223–250

    Google Scholar 

  • Crandall C.G. and Majda A. (1980). The method of fractional steps for conservation laws. Numer. Math. 34: 285–314

    Article  MATH  MathSciNet  Google Scholar 

  • Kim S. and Douglas J. Jr (2001). Improved accuracy for locally one-dimensional methods for parabolic equations. Math. Models Methods Appl. Sci. 11: 1563–1579

    Article  MATH  MathSciNet  Google Scholar 

  • Rachford H.H. and Douglas J. Jr (1956). On the numerical solution of heat conduction problems in two and three space wariables. Trans. Am. Math. Soc. 82: 421–439

    Article  MATH  MathSciNet  Google Scholar 

  • Eyges L. (1972). The Classical Electromagnetic Fields. Addison-Wesley, Reading

    Google Scholar 

  • Feng K. and Qin M. (2003). Symplectic Geometric Algorithms for Hamiltonian Systems (in chinese). Zhejiang Science & Technology Press, Hangzhou

    Google Scholar 

  • Fortin M. and Brezzi F. (1991). Mixed and Hybrid Finite Elements Methods. Springer, New York

    Google Scholar 

  • Gao L., Zhang B. and Liang D. (2007). The splitting-difference time-domain methods for Maxwell’s equations in two dimensions. J. Comput. Appl. Math. 205: 207–230

    Article  MATH  MathSciNet  Google Scholar 

  • Gedney S.D., Liu G., Roden J.A. and Zhu A. (2001). Perfectly matched layer media with CFS for an unconditional stable ADI-FDTD method. IEEE Trans. Antennas Propagation 49: 1554–1559

    Article  MATH  Google Scholar 

  • Hairer, E., Lubich, C., Wanner, G.: Geometric numerical integration: Structure-preserving algorithms for ordinary differential equations. Springer Series in Computational Mathematic, vol 31. Springer, Heidelberg (2002)

  • Holland R. (1984). Implicit three-dimensional finite differencing of Maxwell’s equations. IEEE Trans. Nucl. Sci. 31: 1322–1326

    Article  Google Scholar 

  • Ihlenburg, F.: Finite element analysis of acoustic scattering. Applied mmathematical Sciences, vol 132. Springer, Heidelberg (1998)

  • Karlsen K.H. and Lie K.-A. (1999). An unconditionally stable splitting scheme for a class of nonlinear parabolic equations. IMA J. Numer. Anal. 19: 1–28

    Article  MathSciNet  Google Scholar 

  • Leis R. (1986). Initial Boundary Value Problems in Mathematical Physics. Wiley, New York

    MATH  Google Scholar 

  • Liang D., Du C. and Wang H. (2007). A fractional step ELLAM approach to high-dimensional convection-diffusion problems with forward particle tracking. J. Comput. Phys. 221: 198–225

    Article  MATH  MathSciNet  Google Scholar 

  • Morton, K.W., Mayers, D.F.: Numerical Solution of Partial Differential Equations, 2nd edn. Cambridge University Press, (2005)

  • Monk P. (2003). Finite Element Methods for Maxwell’s Equations. Clarendon press, Oxford

    MATH  Google Scholar 

  • Namiki T. (1999). A new FDTD algorithm based on alternating direction implicit method. IEEE Trans. Microwave Theory Tech. 47: 2003–2007

    Article  Google Scholar 

  • Peaceman D.W. and Rachford H.H. (1955). The numerical soltuion of parabolic and elliptic differentce equations. J. Soc. Ind. Appl. Math. 3: 28–41

    Article  MATH  MathSciNet  Google Scholar 

  • Strang G. (1968). On the construction and comparison of difference scheme. SIAM J. Numer. Anal. 5: 506–517

    Article  MATH  MathSciNet  Google Scholar 

  • Taflove A. and Brodwin M.E. (1975). Numerical solution of steady-state electromagnetic scattering problems using the time-dependent Maxwell’s equations. IEEE Trans. Microwave Theory Tech. 23: 623–630

    Article  Google Scholar 

  • Yanenko, N.N.: The Method of Fractional Steps: The Soltuions of Problems of Mathematical Physics in Several Variables, English translation edited by M.Holt. Springer, Heidelberg (1971)

  • Zhao A.P. (2002). Analysis of the numerical dispersion of the 2-D alternating-direction implicit FDTD method. IEEE Trans. Microwave Theory Tech. 50: 1156–1164

    Article  Google Scholar 

  • Zhang F. and Chen Z. (2000). Numerical dispersion analysis of the unconditionally stable ADI-FDTD method. IEEE Trans. Microwave Theory Tech. 49: 1006–1009

    Article  Google Scholar 

  • Zheng F., Chen Z. and Zhang J. (2000). Toward the development of a three-dimensional unconditionally stable finite-difference-time-domain method. IEEE Trans. Microwave Theory Tech. 48: 1550–1558

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenbin Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, W., Li, X. & Liang, D. Energy-conserved splitting FDTD methods for Maxwell’s equations. Numer. Math. 108, 445–485 (2008). https://doi.org/10.1007/s00211-007-0123-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-007-0123-9

Mathematics Subject Classification (2000)

Navigation