Skip to main content

Advertisement

Log in

Tempol and perindopril protect against lipopolysaccharide-induced cognition impairment and amyloidogenesis by modulating brain-derived neurotropic factor, neuroinflammation and oxido-nitrosative stress

  • Original Article
  • Published:
Naunyn-Schmiedeberg's Archives of Pharmacology Aims and scope Submit manuscript

Abstract

We aim to evaluate the protective role of the central angiotensin-converting enzyme (ACE) inhibitor perindopril, compared with the standard reactive oxygen species (ROS) scavenger tempol, against lipopolysaccharide (LPS)-induced cognition impairment and amyloidogenesis in a simulation to Alzheimer’s disease (AD). Mice were allocated into a control group, an LPS control group (0.8 mg/kg, i.p., once), a tempol (100 mg/kg/day, p.o., 7 days) treatment group, and two perindopril (0.5 and 1 mg/kg/day, p.o., 7 days) treatment groups. A behavioral study was conducted to evaluate spatial and nonspatial memory in mice, followed by a biochemical study involving assessment of brain levels of Aβ and BDNF as Alzheimer and neuroplasticity markers; tumor necrosis factor-alpha (TNF-α), nitric oxide end-products (NOx), neuronal nitric oxide synthase (nNOS), and inducible nitric oxide synthase (iNOS) as inflammatory markers; and superoxide dismutase (SOD), malondialdehyde (MDA), glutathione reduced (GSH), and nitrotyrosine (NT) as oxido-nitrosative stress markers. Finally, histopathological examination of cerebral cortex, hippocampus, and cerebellum sections was performed using both routine and special staining. Tempol and perindopril improved spatial and nonspatial memory in mice without affecting locomotor activity; decreased brain Aβ deposition and BDNF depletion; decreased brain TNF-α, NOx, nNOS, iNOS, MDA, and NT levels; and increased brain SOD and GSH contents, parallel to confirmatory histopathological findings. Tempol and perindopril may be promising agents against AD progression via suppression of Aβ deposition and BDNF decline, suppression of TNF-α production, support of brain antioxidant status, and amelioration of oxido-nitrosative stress and NT production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  • Abdel Moneim AE (2015) Oxidant/antioxidant imbalance and the risk of Alzheimer’s disease. Curr Alzheimer Res 12:335–349

    Article  CAS  Google Scholar 

  • Abdel-Fattah MM, Salama AA, Shehata BA, Ismaiel IE (2015) The potential effect of the angiotensin II receptor blocker telmisartan in regulating OVA-induced airway remodeling in experimental rats. Pharmacol Rep 67:943–951

    Article  CAS  PubMed  Google Scholar 

  • Aksu U, Yanar K, Terzioglu D, Erkol T, Ece E, Aydin S, Uslu E, Çakatay U (2014) Effect of tempol on redox homeostasis and stress tolerance in mimetically aged Drosophila. Arch Insect Biochem Physiol 87:13–25

    Article  CAS  PubMed  Google Scholar 

  • Alzoubi KH, Khabour OF, Albawaana AS, Alhashimi FH, Athamneh RY (2016) Tempol prevents chronic sleep-deprivation induced memory impairment. Brain Res Bull 120:144–150

    Article  CAS  PubMed  Google Scholar 

  • Arai K, Matsuki N, Ikegaya Y, Nishiyama N (2001) Deterioration of spatial learning performances in lipopolysaccharide-treated mice. Jpn J Pharmacol 87:195–201

    Article  CAS  PubMed  Google Scholar 

  • Araujo NB, Moraes HS, Silveira H, Arcoverde C, Vasques PE, Barca ML, Knapskog A-B, Engedal K, Coutinho ESF, Deslandes AC (2014) Impaired cognition in depression and Alzheimer (AD): a gradient from depression to depression in AD. Arq Neuropsiquiatr 72:671–679

    Article  PubMed  Google Scholar 

  • Arimon M, Takeda S, Post KL, Svirsky S, Hyman BT, Berezovska O (2015) Oxidative stress and lipid peroxidation are upstream of amyloid pathology. Neurobiol Dis 84:109–119

  • Awooda HA, Lutfi MF (2015) Oxidative/nitrosative stress in rats subjected to focal cerebral ischemia/reperfusion. Ijhsr 9:17–24

    Google Scholar 

  • Baldaçara L, Borgio JGF, Moraes WAS, Lacerda ALT, Montaño MBMM, Tufik S, Bressan RA, Ramos LR, Jackowski AP (2011) Cerebellar volume in patients with dementia. Rbp 33:122–129

    PubMed  Google Scholar 

  • Bancroft JD, Gamble M (2008) The Haematoxylins and eosin. In: Suvaran K, Layton C, Bancroft JD (eds) Theory and practice of histological techniques. Churchill Livingstone Elsevier, USA, pp. 121–134

    Google Scholar 

  • Barichello T, Dos Santos I, Savi GD, Florentino AF, Silvestre C, Comim CM, Feier G, Sachs D, Teixeira MM, Teixeira AL (2009) Tumor necrosis factor alpha (TNF-α) levels in the brain and cerebrospinal fluid after meningitis induced by Streptococcus pneumoniae. Neurosci Lett 467:217–219. doi:10.1016/j.neulet.2009.10.039

    Article  CAS  PubMed  Google Scholar 

  • Beckman JS, Koppenol WH (1996) Nitric oxide, superoxide, and peroxynitrite: the good, the bad, and ugly. Am J Physiol Cell Physiol 271:C1424–C1437

    CAS  Google Scholar 

  • Bellaver B, Souza DG, Bobermin LD, Souza DO, Gonçalves C-A, Quincozes-Santos A (2015) Resveratrol protects hippocampal astrocytes against LPS-induced neurotoxicity through HO-1, p38 and ERK pathways. Neurochem Res 40:1600–1608

    Article  CAS  PubMed  Google Scholar 

  • Benigni A, Cassis P, Remuzzi G (2010) Angiotensin II revisited: new roles in inflammation, immunology and aging. EMBO Mol Med 2:247–257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bhaskar K, Maphis N, Xu G, Varvel NH, Kokiko-Cochran ON, Weick JP, Staugaitis SM, Cardona A, Ransohoff RM, Herrup K (2014) Microglial derived tumor necrosis factor-α drives Alzheimer’s disease-related neuronal cell cycle events. Neurobiol Dis 62:273–285. doi:10.1016/j.nbd.2013.10.007

    Article  CAS  PubMed  Google Scholar 

  • Braidy N, Zarka M, Welch J, Bridge W (2015) Therapeutic approaches to modulating glutathione levels as a pharmacological strategy in Alzheimer’s disease. Curr Alzheimer Res 12:298–313

    Article  CAS  PubMed  Google Scholar 

  • Brugg B, Dubreuil YL, Huber G, Wollman EE, Delhaye-Bouchaud N, Mariani J (1995) Inflammatory processes induce beta-amyloid precursor protein changes in mouse brain. Pnas 92:3032–3035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cantarella G, Di Benedetto G, Puzzo D, Privitera L, Loreto C, Saccone S, Giunta S, Palmeri A, Bernardini R (2015) Neutralization of TNFSF10 ameliorates functional outcome in a murine model of Alzheimer’s disease. Brain 138:203–216. doi:10.1093/brain/awu318

    Article  PubMed  PubMed Central  Google Scholar 

  • Cao Y, Zhang Y, Wang N, He L (2014) Antioxidant effect of imperatorin from Angelica dahurica in hypertension via inhibiting NADPH oxidase activation and MAPK pathway. J Am Soc Hypertens 8:527–536

    Article  CAS  PubMed  Google Scholar 

  • Cetin F, Yazihan N, Dincer S, Akbulut G (2013) The effect of intracerebroventricular injection of beta amyloid peptide (1-42) on caspase-3 activity, lipid peroxidation, nitric oxide and NOS expression in young adult and aged rat brain. Turk Neurosurg 23:144–150. doi:10.5137/1019-5149.JTN.5855-12.1

    PubMed  Google Scholar 

  • Chatterjee PK, Cuzzocrea S, Brown PA, Zacharowski K, Stewart KN, Mota-Filipe H, Thiemermann C (2000) Tempol, a membrane-permeable radical scavenger, reduces oxidant stress-mediated renal dysfunction and injury in the rat. Kidney Int 58:658–673

    Article  CAS  PubMed  Google Scholar 

  • Chen H, Zhang B, Yao Y, Chen N, Chen X, Tian H, Wang Z, Zheng Q (2012) NADPH oxidase-derived reactive oxygen species are involved in the HL-60 cell monocytic differentiation induced by isoliquiritigenin. Molecules 17:13424–13438

    Article  CAS  PubMed  Google Scholar 

  • Choi JY, Lee JM, Lee DG, Cho S, Yoon Y-H, Cho EJ, Lee S (2015) The n-Butanol Fraction and Rutin from Tartary Buckwheat improve cognition and memory in an In vivo model of amyloid-β-induced Alzheimer’s disease. J Med Food. Ahead of print

  • Claflin KE, Grobe JL (2015) Control of energy balance by the brain renin-angiotensin system. Curr Hypertens Rep 17:38. doi:10.1007/s11906-015-0549-x

    Article  PubMed  Google Scholar 

  • Collingwood JF, Chong RK, Kasama T, Cervera-Gontard L, Dunin-Borkowski RE, Perry G, Posfai M, Siedlak SL, Simpson ET, Smith MA (2008) Three-dimensional tomographic imaging and characterization of iron compounds within Alzheimer’s plaque core material. J Alzheimers Dis 14:235–245

    CAS  PubMed  Google Scholar 

  • Cunha J, Masur J (1978) Evaluation of psychotropic drugs with a modified open field test. Pharmacol 16:259–267

    Article  CAS  Google Scholar 

  • de Cavanagh EM, Inserra F, Ferder L (2010) Angiotensin II blockade: a strategy to slow aging by protecting mitochondria? Cardiovasc Res 89:31–40. doi:10.1093/cvr/cvq285

    Article  PubMed  CAS  Google Scholar 

  • Deng Y, Hou D, Tian M, Li W, Feng X (2014) β-amyloid peptide deposition and expression of related miRNAs in the cerebellum of a mouse model of Alzheimer’s disease. Nan fang yi ke da xue xue bao = J South Med Univer 34: 323–328

  • Dhikav V, Sethi M, Anand K (2014) Medial temporal lobe atrophy in Alzheimer’s disease/mild cognitive impairment with depression. Bjr 87:20140150. doi:10.1259/bjr.20140150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Díaz A, Rojas K, Espinosa B, Chávez R, Zenteno E, Limón D, Guevara J (2014) Aminoguanidine treatment ameliorates inflammatory responses and memory impairment induced by amyloid-beta 25–35 injection in rats. Neuropept 48:153–159. doi:10.1016/j.npep.2014.03.002

    Article  CAS  Google Scholar 

  • Dohare P, Hyzinski-García MC, Vipani A, Bowens NH, Nalwalk JW, Feustel PJ, Keller RW Jr, Jourd’heuil D, Mongin AA (2014) The neuroprotective properties of the superoxide dismutase mimetic tempol correlate with its ability to reduce pathological glutamate release in a rodent model of stroke. Free Radic Biol Med 77:168–182

    Article  CAS  PubMed  Google Scholar 

  • Dong Y-F, Kataoka K, Tokutomi Y, Nako H, Nakamura T, Toyama K, Sueta D, Koibuchi N, Yamamoto E, Ogawa H (2011) Perindopril, a centrally active angiotensin-converting enzyme inhibitor, prevents cognitive impairment in mouse models of Alzheimer’s disease. Faseb 25:2911–2920

    Article  CAS  Google Scholar 

  • Dornas WC, Silva M, Tavares R, de Lima WG, dos Santos RC, Pedrosa ML, Silva ME (2015) Efficacy of the superoxide dismutase mimetic tempol in animal hypertension models: a meta-analysis. J Hypertens 33:14–23

    Article  CAS  PubMed  Google Scholar 

  • Dubinina E, Schedrina L, Neznanov N, Zalutskaya N, Zakharchenko D (2015) Oxidative stress and its effect on cells functional activity of alzheimer’s disease. Biomeditsinskaia Khimiia 61:57–69

    Article  CAS  PubMed  Google Scholar 

  • Ellman GL (1959) Tissue sulfhydryl groups. Arch Biochem Biophys 82:70–77

    Article  CAS  PubMed  Google Scholar 

  • El-Sayed NS, Bayan Y (2015) Possible role of resveratrol targeting estradiol and neprilysin pathways in lipopolysaccharide model of Alzheimer disease. In: Valmos P, Alexiou A (eds) GeNeDis 2014. Springer, Switzerland, pp. 107–118

    Chapter  Google Scholar 

  • El-Sayed NS, Kassem LA, Heikal OA (2009) Promising therapy for Alzheimer’s disease targeting angiotensinconverting enzyme and the cyclooxygense-2 isoform. Drug Discov Ther 3:307–315

    CAS  PubMed  Google Scholar 

  • Eraldemir FC, Ozsoy D, Bek S, Kir H, Dervisoglu E (2015) The relationship between brain-derived neurotrophic factor levels, oxidative and nitrosative stress and depressive symptoms: a study on peritoneal dialysis. Ren Fail 37:722–726

    Article  CAS  PubMed  Google Scholar 

  • Fahmy Wahba MG, Shehata Messiha BA, Abo-Saif AA (2015) Ramipril and haloperidol as promising approaches in managing rheumatoid arthritis in rats. Eur J Pharmacol 65:307–315

  • Gallagher JJ, Finnegan ME, Grehan B, Dobson J, Collingwood JF, Lynch MA (2012) Modest amyloid deposition is associated with iron dysregulation, microglial activation, and oxidative stress. J Alzheimers Dis 28:147–161. doi:10.3233/JAD-2011-110614

    CAS  PubMed  Google Scholar 

  • Gamba P, Testa G, Gargiulo S, Staurenghi E, Poli G, Leonarduzzi G (2015) Oxidized cholesterol as the driving force behind the development of Alzheimer’s disease. Front Aging Neurosci 7:119

    Article  PubMed  PubMed Central  Google Scholar 

  • George A, Schmidt C, Weishaupt A, Toyka KV, Sommer C (1999) Serial determination of tumor necrosis factor-alpha content in rat sciatic nerve after chronic constriction injury. Exp Neurol 160:124–132

    Article  CAS  PubMed  Google Scholar 

  • Giraldo E, Lloret A, Fuchsberger T, Viña J (2014) Aβ and tau toxicities in Alzheimer’s are linked via oxidative stress-induced p38 activation: protective role of vitamin E. Redox Biol 2:873–877

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goel R, Bhat SA, Hanif K, Nath C, Shukla R (2015) Perindopril attenuates lipopolysaccharide induced amyloidogenesis and memory impairment by suppression of oxidative stress and RAGE activation. ACS Chem Neurosci. Ahead of print

  • Graham SF, Nasaruddin MB, Carey M, Holscher C, McGuinness B, Kehoe PG, Love S, Passmore P, Elliott CT, Meharg AA (2014) Age-associated changes of brain copper, iron, and zinc in Alzheimer’s disease and dementia with Lewy bodies. J Alzheimers Dis 42:1407–1413. doi:10.3233/JAD-140684

    CAS  PubMed  Google Scholar 

  • Guix FX, Wahle T, Vennekens K, Snellinx A, Chávez-Gutiérrez L, Ill-Raga G, Ramos-Fernandez E, Guardia-Laguarta C, Lleó A, Arimon M (2012) Modification of γ-secretase by nitrosative stress links neuronal ageing to sporadic Alzheimer’s disease. EMBO Mol Med 4:660–673. doi:10.1002/emmm.201200243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hahn SM, Tochner Z, Krishna CM, Glass J, Wilson L, Samuni A, Sprague M, Venzon D, Glatstein E, Mitchell JB (1992) Tempol, a stable free radical, is a novel murine radiation protector. Cancer Res 52:1750–1753

    CAS  PubMed  Google Scholar 

  • Han BH, M-l Z, Johnson AW, Singh I, Liao F, Vellimana AK, Nelson JW, Milner E, Cirrito JR, Basak J (2015) Contribution of reactive oxygen species to cerebral amyloid angiopathy, vasomotor dysfunction, and microhemorrhage in aged Tg2576 mice. Proc Natl Acad Sci 112:E881–E890. doi:10.1212/WNL.0b013e31828726f5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hardy J, Selkoe DJ (2002) The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science 297:353–356

    Article  CAS  PubMed  Google Scholar 

  • Hevel JM, Marletta MA (1994) [25] Nitric-oxide synthase assays. Methods Enzymol 233:250–258

    Article  CAS  PubMed  Google Scholar 

  • Hou D-R, Wang Y, Zhou L, Chen K, Tian Y, Song Z, Bao J, Yang Q-D (2008) Altered angiotensin-converting enzyme and its effects on the brain in a rat model of Alzheimer disease. Chin Med J 121:2320–2323. doi:10.1016/B978-0-12-800254-4.00006-4

    CAS  PubMed  Google Scholar 

  • Hu Y, Zhu D-Y (2014) Hippocampus and nitric oxide. Vitam Horm 96:127–160. doi:10.1016/B978-0-12-800254-4.00006-4

    Article  CAS  PubMed  Google Scholar 

  • Hu Q, Jin LW, Starbuck MY, Martin GM (2000) Broadly altered expression of the mRNA isoforms of FE65, a facilitator of beta amyloidogenesis, in Alzheimer cerebellum and other brain regions. J Neurosci Res 60:73–86

    Article  CAS  PubMed  Google Scholar 

  • Jaeger LB, Dohgu S, Sultana R, Lynch JL, Owen JB, Erickson MA, Shah GN, Price TO, Fleegal-Demotta MA, Butterfiled DA (2009) Lipopolysaccharide alters the blood–brain barrier transport of amyloid β protein: a mechanism for inflammation in the progression of Alzheimer’s disease. Brain Behav Immun 23:507–517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jawaid T, Jahan S, Kamal M (2015) A comparative study of neuroprotective effect of angiotensin converting enzyme inhibitors against scopolamine-induced memory impairments in rats. J Adv Pharm Technol Res 6:130–135. doi:10.4103/2231-4040.161514

    Article  PubMed  PubMed Central  Google Scholar 

  • Jiang P, Li C, Xiang Z, Jiao B (2014) Tanshinone IIA reduces the risk of Alzheimer’s disease by inhibiting iNOS, MMP-2 and NF-κBp65 transcription and translation in the temporal lobes of rat models of Alzheimer’s disease. Mol Med Report 10:689–694. doi:10.3892/mmr.2014.2254

    CAS  Google Scholar 

  • Kafkafi N, Lipkind D, Benjamini Y, Mayo CL, Elmer GI, Golani I (2003) SEE locomotor behavior test discriminates C57BL/6J and DBA/2J mouse inbred strains across laboratories and protocol conditions. Behav Neurosci 117:464

    Article  PubMed  Google Scholar 

  • Kang H-J, Kim J-M, Kim S-W, Shin I-S, Park S-W, Kim Y-H, Yoon J-S (2014) Associations of cytokine genes with Alzheimer’s disease and depression in an elderly Korean population. J Neurol Neurosurg Psychiatry. doi: jnnp-2014-308469

  • Kennelly S, Collins O (2012) Walking the cognitive “minefield” between high and low blood pressure. J Alzheimer Dis 32:609–621

    Google Scholar 

  • Kim E-A, Cho C, Kim D, Choi S, Huh J-W, Cho S-W (2015) Antioxidative effects of ethyl 2-(3-(benzo [d] thiazol-2-yl) ureido) acetate against amyloid β-induced oxidative cell death via NF-κB, GSK-3β and β-catenin signaling pathways in cultured cortical neurons. Free Radic Res 49:411–421. doi:10.3109/10715762.2015.1007048

    Article  CAS  PubMed  Google Scholar 

  • Kirsten TB, Galvão MC, Reis-Silva TM, Queiroz-Hazarbassanov N, Bernardi MM (2015) Zinc prevents Sickness behavior induced by Lipopolysaccharides after a stress Challenge in rats. PLoS one 10:e0120263. doi:10.1371/journal.pone.0120263

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kugaevskaya E (2011) Angiotensin converting enzyme and Alzheimer’s disease. Biochem (Mosc) Suppl Ser B Biomed Chem 6:11–22

    Article  Google Scholar 

  • Leger M, Quiedeville A, Bouet V, Haelewyn B, Boulouard M, Schumann-Bard P, Freret T (2013) Object recognition test in mice. Nat Protoc 8:2531–2537. doi:10.1038/nprot.2013.155

    Article  CAS  PubMed  Google Scholar 

  • Leirós M, Alonso E, Rateb ME, Houssen WE, Ebel R, Jaspars M, Alfonso A, Botana LM (2015) Gracilins: Spongionella-derived promising compounds for Alzheimer disease. Neuropharmacol 93:285–293

    Article  CAS  Google Scholar 

  • Lewis P, Sheehan D, Soares R, Varela Coelho A, O’Halloran KD (2015) Chronic sustained hypoxia-induced redox remodeling causes contractile dysfunction in mouse sternohyoid muscle. Front Physiol 6:122

    PubMed  PubMed Central  Google Scholar 

  • Li S, Wang W, Wang C, Tang Y-Y (2010) Possible involvement of NO/NOS signaling in hippocampal amyloid-β production induced by transient focal cerebral ischemia in aged rats. Neurosc Lett 470:106–110

    Article  CAS  Google Scholar 

  • Li J, Ding X, Zhang R, Jiang W, Sun X, Xia Z, Wang X, Wu E, Zhang Y, Hu Y (2015) Harpagoside ameliorates the amyloid-β-induced cognitive impairment in rats via up-regulating BDNF expression and MAPK/PI3K pathways. Neurosc 303:103–114

    Article  CAS  Google Scholar 

  • Liu R, J-z L, J-k S, J-l S, Y-j L, S-b Z, T-t Z, G-h D (2014) Pinocembrin protects human brain microvascular endothelial cells against fibrillar amyloid-β 1–40 injury by suppressing the MAPK/NF-κ B inflammatory pathways. BioMed Res Inter 2014:470393

    Google Scholar 

  • Lu Q, Ke Y, Cheng W, Wang Y, Yu C, Wen J (2008) Effects of perindopril and enalapril on atherosclerosis development of apolipoprotein E knockout mice. Zhonghua Xin Xue Guan Bing Za Zhi 36:350–354

    CAS  PubMed  Google Scholar 

  • Maher A, El-Sayed NS-E, Breitinger H-G, Gad MZ (2014) Overexpression of NMDAR2B in an inflammatory model of Alzheimer’s disease: modulation by NOS inhibitors. Brain Res Bull 109:109–116. doi:10.1016/j.brainresbull.2014.10.007

    Article  CAS  PubMed  Google Scholar 

  • Malinski T (2007) Nitric oxide and nitroxidative stress in Alzheimer’s disease. J Alzheimers Dis 11:207–218

    CAS  PubMed  Google Scholar 

  • Marchesi C, Paradis P, Schiffrin EL (2008) Role of the renin–angiotensin system in vascular inflammation. Trends Pharmacol Sci 29:367–374. doi:10.1016/j.tips.2008.05.003

    Article  CAS  PubMed  Google Scholar 

  • Mashhoody T, Rastegar K, Zal F (2014) Perindopril may improve the hippocampal reduced glutathione Content in Rats. Adv Pharm Bull 4:155–159. doi:10.5681/apb.2014.023

    PubMed  PubMed Central  Google Scholar 

  • Mateos L, Ismail M-A-M, Gil-Bea F-J, Leoni V, Winblad B, Bjoerkhem I, Cedazo-Minguez A (2011) Upregulation of brain renin angiotensin system by 27-hydroxycholesterol in Alzheimer’s disease. J Alzheimers Dis 24:669–679. doi:10.3233/JAD-2011-101512

    CAS  PubMed  Google Scholar 

  • Mattson MP (2000) Apoptosis in neurodegenerative disorders. Nat Rev Mol Cell Biol 1:120–130. doi:10.1196/annals.1418.005

    Article  CAS  PubMed  Google Scholar 

  • McKinley M, Albiston A, Allen A, Mathai M, May C, McAllen R, Oldfield B, Mendelsohn F, Chai S (2003) The brain renin–angiotensin system: location and physiological roles. Int J Biochem Cell Biol 35:901–918

    Article  CAS  PubMed  Google Scholar 

  • Mizera R, Hodyc D, Herget J (2015) ROS scavenger decreases basal perfusion pressure, vasoconstriction and NO synthase activity in pulmonary circulation during pulmonary microembolism. Physiol Res 64:683–688

    CAS  PubMed  Google Scholar 

  • Mohammed NEM, Messiha BAS, Abo-Saif AA (2015) Effect of amlodipine, lisinopril and allopurinol on acetaminophen-induced hepatotoxicity in rats. Saudi Pharm J. doi:10.1016/j.jsps.2015.04.004

    Google Scholar 

  • Mota SI, Costa RO, Ferreira IL, Santana I, Caldeira GL, Padovano C, Fonseca AC, Baldeiras I, Cunha C, Letra L (2015) Oxidative stress involving changes in Nrf2 and ER stress in early stages of Alzheimer’s disease. Biochim Biophys Acta Mol Basis Dis 1852:1428–1441. doi:10.1016/j.bbadis.2015.03.015

    Article  CAS  Google Scholar 

  • Nunomura A, Castellani RJ, Zhu X, Moreira PI, Perry G, Smith MA (2006) Involvement of oxidative stress in Alzheimer disease. J Neuropathol Exp Neurol 65:631–641

    Article  CAS  PubMed  Google Scholar 

  • Ohkawa H, Ohishi N, Yagi K (1979) Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 95:351–358

    Article  CAS  PubMed  Google Scholar 

  • Onaolapo OJ, Onaolapo AY, Akanmu MA, Olayiwola G (2015) Foraging enrichment modulates open field response to Monosodium glutamate in mice. Ann Neurosci 22:162–170

    PubMed  PubMed Central  Google Scholar 

  • Pacher P, Beckman JS, Liaudet L (2007) Nitric oxide and peroxynitrite in health and disease. Physiol Rev 87:315–424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Packer N, Hoffman-Goetz L (2015) Acute exercise increases hippocampal TNF-α, caspase-3 and Caspase-7 expression in healthy young and older mice. J Sports Med Phys Fitness 55:368–376

    CAS  PubMed  Google Scholar 

  • Paul M, Mehr AP, Kreutz R (2006) Physiology of local renin-angiotensin systems. Physiol Rev 86:747–803

    Article  CAS  PubMed  Google Scholar 

  • Pearson JN, Rowley S, Liang L-P, White AM, Day BJ, Patel M (2015) Reactive oxygen species mediate cognitive deficits in experimental temporal lobe epilepsy. Neurobiol Dis 82:289–297

    Article  CAS  PubMed  Google Scholar 

  • Persichilli S, Gervasoni J, Di Napoli A, Fuso A, Nicolia V, Giardina B, Scarpa S, Desiderio C, Cavallaro RA (2015) Plasma thiols levels in Alzheimer’s disease mice under diet-induced hyperhomocysteinemia: effect of S-adenosylmethionine and superoxide-dismutase supplementation. J Alzheimers Dis 44:1323–1331. doi:10.3233/JAD-142391

    CAS  PubMed  Google Scholar 

  • Prince M, Bryce R, Albanese E, Wimo A, Ribeiro W, Ferri CP (2013) The global prevalence of dementia: a systematic review and metaanalysis. Alzheimer’s Dementia 9:63–75.e62. doi:10.1016/j.jalz.2012.11.007

    Article  PubMed  Google Scholar 

  • Psotta L, Rockahr C, Gruss M, Kirches E, Braun K, Lessmann V, Bock J, Endres T (2015) Impact of an additional chronic BDNF reduction on learning performance in an Alzheimer mouse model. Front Behav Neurosci 9:58. doi:10.3389/fnbeh.2015.00058

    Article  PubMed  PubMed Central  Google Scholar 

  • Rao KVR, Curtis KM, Johnstone JT, Norenberg MD (2013) Amyloid-β inhibits thrombospondin 1 release from cultured astrocytes: effects on synaptic protein expression. J Neuropathol Exp Neurol 72:735–744

    Article  CAS  Google Scholar 

  • Robak J, Gryglewski RJ (1988) Flavonoids are scavengers of superoxide anions. Biochem Pharmacol 37:837–841

    Article  CAS  PubMed  Google Scholar 

  • Rochefort C, Lefort JM, Rondi-Reig L (2013) The cerebellum: a new key structure in the navigation system. Front Neural Circuits 7:35. doi:10.3389/fncir.2013.00035

    Article  PubMed  PubMed Central  Google Scholar 

  • Rogers MD (2015) Commentary on “Monosodium glutamate neurotoxicity increases beta amyloid in the rat hippocampus: a potential role for cyclic AMP protein kinase”. Neurotoxicol Ahead of print

  • Rowan MJ, Klyubin I, Wang Q, Anwyl R (2004) Mechanisms of the inhibitory effects of amyloid β-protein on synaptic plasticity. Exp Gerontol 39:1661–1667

    Article  CAS  PubMed  Google Scholar 

  • Sarter M, Bodewitz G, Stephens DN (1988) Attenuation of scopolamine-induced impairment of spontaneous alternation behaviour by antagonist but not inverse agonist and agonist β-carbolines. Psychopharmacol (Berl) 94:491–495

    Article  CAS  Google Scholar 

  • Sheng JG, Bora SH, Xu G, Borchelt DR, Price DL, Koliatsos VE (2003) Lipopolysaccharide-induced-neuroinflammation increases intracellular accumulation of amyloid precursor protein and amyloid β peptide in APPswe transgenic mice. Neurobiol Dis 14:133–145

    Article  CAS  PubMed  Google Scholar 

  • Silswal N, Parelkar N, Andresen J, Wacker MJ (2015) Restoration of endothelial function in pparα (−/−) mice by tempol. Ppar 2015:728494

    Google Scholar 

  • Stragier E, Martin V, Davenas E, Poilbout C, Mongeau R, Corradetti R, Lanfumey L (2015) Brain plasticity and cognitive functions after ethanol consumption in C57BL/6 J mice. Transl Psychiatry 5:e696. doi:10.1038/tp.2015.183

    Article  CAS  PubMed  Google Scholar 

  • Sun J, Zhang X, Broderick M, Fein H (2003) Measurement of nitric oxide production in biological systems by using Griess reaction assay. Sensors 3:276–284

    Article  CAS  Google Scholar 

  • Tajes M, Ill-Raga G, Palomer E, Ramos-Fernández E, Guix FX, Bosch-Morató M, Guivernau B, Jiménez-Conde J, Ois A, Pérez-Asensio F (2013) Nitro-oxidative stress after neuronal ischemia induces protein nitrotyrosination and cell death. Oxidative Med Cell Longev 2013:826143

    Article  CAS  Google Scholar 

  • Tan RH, Devenney E, Kiernan MC, Halliday GM, Hodges JR, Hornberger M (2015) Terra incognita—cerebellar contributions to neuropsychiatric and cognitive dysfunction in behavioral variant frontotemporal dementia. Front Aging Neurosci 7:121. doi:10.3389/fnagi.2015.00121

    Article  PubMed  PubMed Central  Google Scholar 

  • Ter Steege JC, Koster-Kamphuis L, van Straaten EA, Forget PP, Buurman WA (1998) Nitrotyrosine in plasma of celiac disease patients as detected by a new sandwich ELISA. Free Radic Biol Med 25:953–963

    Article  PubMed  Google Scholar 

  • Trajkovska V, Marcussen AB, Vinberg M, Hartvig P, Aznar S, Knudsen GM (2007) Measurements of brain-derived neurotrophic factor: methodological aspects and demographical data. Brain Res Bull 73:143–149

    Article  CAS  PubMed  Google Scholar 

  • Tsai C-Y, Chan JY, Hsu K, Chang AY, Chan SH (2012) Brain-derived neurotrophic factor ameliorates brain stem cardiovascular dysregulation during experimental temporal lobe status epilepticus. PLoS one 7:e33527–e33527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsikas D (2007) Analysis of nitrite and nitrate in biological fluids by assays based on the Griess reaction: appraisal of the Griess reaction in the L-arginine/nitric oxide area of research. J Chromatogr B 851:51–70

    Article  CAS  Google Scholar 

  • Verges DK, Restivo JL, Goebel WD, Holtzman DM, Cirrito JR (2011) Opposing synaptic regulation of amyloid-β metabolism by NMDA receptors in vivo. J Neurosci 31:11328–11337. doi:10.1523/JNEUROSCI.0607-11.2011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • von Bohlen und Halbach O, Albrecht D (2006) The CNS renin-angiotensin system. Cell Tissue Res 326:599–616

  • Vorhees CV, Williams MT (2006) Morris water maze: procedures for assessing spatial and related forms of learning and memory. Nat Protoc 1:848–858

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang T (2015) TNF-alpha G308A polymorphism and the susceptibility to Alzheimer’s disease: an updated meta-analysis. Arch Med Res 46:24–30.e21

    Article  PubMed  CAS  Google Scholar 

  • Wang Y, Zhou D, Shen Q, Cheng C, Liu HO, Qin Y, Sun L, Xiao F, Zhao J, Shen A (2007) Lipopolysaccharide-induced upregulation of tumor necrosis factor-alpha (TNF-alpha) and TNF receptors in rat sciatic nerve. J Mol Neurosci 32:207–216. doi:10.1016/j.arcmed.2014.12.006

    Article  CAS  PubMed  Google Scholar 

  • Washida K, Ihara M, Nishio K, Fujita Y, Maki T, Yamada M, Takahashi J, Wu X, Kihara T, Ito H (2010) Nonhypotensive dose of telmisartan attenuates cognitive impairment partially due to peroxisome proliferator-activated receptor-γ activation in mice with chronic cerebral hypoperfusion. Stroke 41:1798–1806

    Article  CAS  PubMed  Google Scholar 

  • Weier K, Till C, Fonov V, Yeh EA, Arnold DL, Banwell B, Collins DL (2015) Contribution of the cerebellum to cognitive performance in children and adolescents with multiple sclerosis. J Mult Scler. Ahead of print

  • Wiesmann M, Kiliaan AJ, Claassen JA (2013) Vascular aspects of cognitive impairment and dementia. J Cereb Blood Flow Metab 33:1696–1706

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wilcox CS, Pearlman A (2008) Chemistry and antihypertensive effects of tempol and other nitroxides. Pharmacol Rev 60:418–469. doi:10.1124/pr.108.000240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu L-Y, Bao X-Q, Pang H-Y, Sun H, Zhang D (2015a) FLZ attenuates learning and memory deficits via suppressing neuroinflammation induced by LPS in mice. J Asian Nat Prod Res 17:306–317. doi:10.1080/10286020.2014.1003183

    Article  CAS  PubMed  Google Scholar 

  • Wu J, Bie B, Naguib M (2015b) Epigenetic manipulation of brain-derived neurotrophic factor improves memory deficiency induced by neonatal anesthesia in rats. Anesthesiology. Ahead of print

  • Xiong JY, Li SC, Sun YX, Zhang XS, Dong ZZ, Zhong P, Sun XR (2015) Long-term treadmill exercise improves spatial memory of male APPswe/PS1dE9 mice by regulation of BDNF expression and microglia activation. Biol Sport 32:295–300. doi:10.5604/20831862.1163692

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu Y, Zhang Z, Zhao Y, Dong X, Wang X, Zhang L (2014) Enhanced effect of guizhi plus Gegen Decoction on learning and memory disorder in LPS induced neuroinflammatory mice. Chin J Integr Med 34:179–184

    Google Scholar 

  • Yamada J, Yoshimura S, Yamakawa H, Sawada M, Nakagawa M, Hara S, Kaku Y, Iwama T, Naganawa T, Banno Y, Nakashima S, Sakai N (2003) Cell permeable ROS scavengers, Tiron and Tempol, rescue PC12 cell death caused by pyrogallol or hypoxia/reoxygenation. Neurosci Res 45:1–8

    Article  CAS  PubMed  Google Scholar 

  • Yamada K, Uchida S, Takahashi S, Takayama M, Nagata Y, Suzuki N, Shirakura S, Kanda T (2010) Effect of a centrally active angiotensin-converting enzyme inhibitor, perindopril, on cognitive performance in a mouse model of Alzheimer’s disease. Brain Res 1352:176–186. doi:10.1016/j.brainres.2010.07.006

    Article  CAS  PubMed  Google Scholar 

  • Yang W-N, Han H, Hu X-D, Feng G-F, Qian Y-H (2013) The effects of perindopril on cognitive impairment induced by d-galactose and aluminum trichloride via inhibition of acetylcholinesterase activity and oxidative stress. Pharmacol Biochem Behav 114:31–36

    Article  PubMed  CAS  Google Scholar 

  • Yang W, Shi L, Chen L, Zhang B, Ma K, Liu Y, Qian Y (2014) Protective effects of perindopril on d-galactose and aluminum trichloride induced neurotoxicity via the apoptosis of mitochondria-mediated intrinsic pathway in the hippocampus of mice. Brain Res Bull 109:46–53. doi:10.1016/j.brainresbull.2014.09.010

    Article  CAS  PubMed  Google Scholar 

  • Yang W-N, Ma K-G, Qian Y-H, Zhang J-S, Feng G-F, Shi L-L, Zhang Z-C, Liu Z-H (2015) Mitogen-activated protein kinase signaling pathways promote low-density lipoprotein receptor-related protein 1-mediated internalization of beta-amyloid protein in primary cortical neurons. Int J Biochem Cell Biol 64:252–264

    Article  CAS  PubMed  Google Scholar 

  • Yuan L, Wu J, Liu J, Li G, Liang D (2015) Intermittent hypoxia-induced parvalbumin-immunoreactive interneurons loss and neurobehavioral impairment is mediated by NADPH-oxidase-2. Neurochem Res 40:1232–1242

    Article  CAS  PubMed  Google Scholar 

  • Zhang Q-G, Laird MD, Han D, Nguyen K, Scott E, Dong Y, Dhandapani KM, Brann DW (2012) Critical role of NADPH oxidase in neuronal oxidative damage and microglia activation following traumatic brain injury. PLoS one 7:e34504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang X-Y, Cao J-B, Zhang L-M, Li Y-F, Mi W-D (2015) Deferoxamine attenuates lipopolysaccharide-induced neuroinflammation and memory impairment in mice. J Neuroinflammation 12:20

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhao P, Zhou R, Li H-N, Yao W-X, Qiao H-Q, Wang S-J, Niu Y, Sun T, Li Y-X, Yu J-Q (2015a) Oxymatrine attenuated hypoxic-ischemic brain damage in neonatal rats via improving antioxidant enzyme activities and inhibiting cell death. Neurochem Int. Ahead of print

  • Zhao Y, Zhang Y, Pan F (2015b) The effects of EGb761 on lipopolysaccharide-induced depressive-like behaviour in C57BL/6J mice. Centr Eur J Immunol 40:11–17. doi:10.5114/ceji.2015.49427

    Article  CAS  Google Scholar 

  • Zhu D, Shi J, Zhang Y, Wang B, Liu W, Chen Z, Tong Q (2011) Central angiotensin II stimulation promotes β amyloid production in Sprague Dawley rats. PLoS one 6:e16037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Basim Anwar Shehata Messiha.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Highlights

• Administration of LPS to mice in a single i.p. dose causes AD simulation.

• Tempol and perindopril may be protected against experimental AD progression.

• Both agents act through inhibition of Aβ deposition and BDNF decline.

• Both agents also suppress brain TNF-α production and oxido-nitrosative stress.

About the current study

We are interested in investigating beneficial effects of drugs interfering with the renin-angiotensin system on noncardiovascular disorders, including respiratory, musculoskeletal, immunological, and CNS disorders. I have just coauthored a manuscript in the European Journal of Pharmacology concerning the effect of angiotensin-converting enzyme inhibition by ramipril on experimental rheumatoid arthritis (doi:10.1016/j.ejphar.2015.08.026), another one in Pharmacological Reports concerning the role of angiotensin receptor blockade by telmisartan on the progression of bronchial asthma (doi:10.1016/j.pharep.2015.02.010), and a third one in Saudi Pharmaceutical Journal concerning the hepatoprotective role of ACE inhibition by lisinopril (doi:10.1016/j.jsps.2015.04.004).

In the present investigation, we evaluated the protective effect of perindopril, a centrally acting angiotensin-converting enzyme inhibitor, compared with tempol, a well-known superoxide scavenger, on LPS-induced cognition impairment and amyloidogenesis in mice in a simulation to Alzheimer disease. We focused on mechanisms not studied before regarding the effect of tempol or perindopril on this model, including particularly the role of brain-derived neurotropic factor, nitrotyrosine production, and cerebellar amyloidogenesis.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ali, M.R.AA., Abo-Youssef, A.M.H., Messiha, B.A.S. et al. Tempol and perindopril protect against lipopolysaccharide-induced cognition impairment and amyloidogenesis by modulating brain-derived neurotropic factor, neuroinflammation and oxido-nitrosative stress. Naunyn-Schmiedeberg's Arch Pharmacol 389, 637–656 (2016). https://doi.org/10.1007/s00210-016-1234-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00210-016-1234-6

Keywords

Navigation