Skip to main content
Log in

Attenuation of insulin resistance in rats by agmatine: role of SREBP-1c, mTOR and GLUT-2

  • Original Article
  • Published:
Naunyn-Schmiedeberg's Archives of Pharmacology Aims and scope Submit manuscript

Abstract

Insulin resistance is a serious health condition worldwide; however, its exact mechanisms are still unclear. This study investigates agmatine (AGM; an endogenous metabolite of l-arginine) effects on insulin resistance induced by high fructose diet (HFD) in rats and the possible involved mechanisms. Sprague Dawley rats were fed 60 % HFD for 12 weeks, and AGM (10 mg/kg/day, orally) was given from week 9 to 12. AGM significantly reduced HFD-induced elevation in fasting insulin level, homeostasis model assessment of insulin resistance (HOMA-IR) index and liver glycogen content from 3.44-, 3.62- and 2.07- to 2.59-, 2.78- and 1.3-fold, respectively, compared to the control group, while it increased HFD-induced reduction in glucose tolerance. Additionally, AGM significantly decreased HFD-induced elevation in serum triglycerides, low density lipoprotein cholesterol and very low density lipoprotein cholesterol levels from 3.18-, 2.97- and 4.75- to 1.25-, 1.25- and 1.07-fold, respectively, compared to control group. Conversely, AGM had no significant effect on HFD-induced changes in fasting glucose, glycosylated hemoglobin, insulin tolerance and high density lipoprotein cholesterol. Furthermore, AGM significantly reduced HFD-induced elevation in mRNA expression of glucose transporter type-2 (GLUT-2), mammalian target of rapamycin (mTOR) and sterol regulatory element-binding protein-1c (SREBP-1c) without affecting that of peroxisome proliferator-activated receptor-alpha (PPAR-α) in the liver. Additionally, AGM enhanced ACh-induced aortic relaxation and attenuated liver steatosis induced by HFD. In conclusion, AGM may have a therapeutic potential in insulin resistance through suppressing SREBP-1c, mTOR and GLUT-2 in liver.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

AGM:

Agmatine

GLUT-2:

Glucose transporter type-2

HFD:

High fructose diet

HOMA-IR:

Homeostasis model assessment of insulin resistance

mTOR:

The mammalian target of rapamycin

PPAR-α:

Peroxisome proliferator-activated receptor-alpha

SREBP-1c:

Sterol regulatory element-binding protein-1c

References

  • Akar F, Uludag O, Aydin A, Aytekin YA, Elbeg S, Tuzcu M, Sahin K (2012) High-fructose corn syrup causes vascular dysfunction associated with metabolic disturbance in rats: protective effect of resveratrol. Food Chem Toxicol 50:2135–2141

    Article  PubMed  CAS  Google Scholar 

  • Basciano H, Federico L, Adeli K (2005) Fructose, insulin resistance, and metabolic dyslipidemia. Nutr Metab (Lond) 2:5

    Article  CAS  Google Scholar 

  • Bezerra RM, Ueno M, Silva MS, Tavares DQ, Carvalho CR, Saad MJ (2000) A high fructose diet affects the early steps of insulin action in muscle and liver of rats. J Nutr 130:1531–1535

    PubMed  CAS  Google Scholar 

  • Burcelin R, Dolci W, Thorens B (2000) Glucose sensing by the hepatoportal sensor is GLUT2-dependent: in vivo analysis in GLUT2-null mice. Diabetes 49:1643–1648

    Article  PubMed  CAS  Google Scholar 

  • Chang CH, Wu HT, Cheng KC, Lin HJ, Cheng JT (2010) Increase of beta-endorphin secretion by agmatine is induced by activation of imidazoline I(2A) receptors in adrenal gland of rats. Neurosci Lett 468:297–299

    Article  PubMed  CAS  Google Scholar 

  • El-Agamy DS, Sharawy MH, Ammar EM (2014) Agmatine attenuates silica-induced pulmonary fibrosis. Hum Exp Toxicol 33:650–660

    Article  PubMed  CAS  Google Scholar 

  • El-Awady MS, Suddek GM (2014) Agmatine ameliorates atherosclerosis progression and endothelial dysfunction in high cholesterol-fed rabbits. J Pharm Pharmacol 66:835–843

    PubMed  CAS  Google Scholar 

  • Elliott SS, Keim NL, Stern JS, Teff K, Havel PJ (2002) Fructose, weight gain, and the insulin resistance syndrome. Am J Clin Nutr 76:911–922

    PubMed  CAS  Google Scholar 

  • Flannery C, Dufour S, Rabol R, Shulman GI, Petersen KF (2012) Skeletal muscle insulin resistance promotes increased hepatic de novo lipogenesis, hyperlipidemia, and hepatic steatosis in the elderly. Diabetes 61:2711–2717

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gilad GM, Gilad VH (2013) Evidence for oral agmatine sulfate safety—a 95-day high dosage pilot study with rats. Food Chem Toxicol 62:758–762

    Article  PubMed  CAS  Google Scholar 

  • Gilad GM, Gilad VH (2014) Long-term (5 years), high daily dosage of dietary agmatine—evidence of safety: a case report. J Med Food 17:1256–1259

    Article  PubMed  Google Scholar 

  • Gual P, Le Marchand-Brustel Y, Tanti JF (2005) Positive and negative regulation of insulin signaling through IRS-1 phosphorylation. Biochimie 87:99–109

    Article  PubMed  CAS  Google Scholar 

  • Havel PJ (2005) Dietary fructose: implications for dysregulation of energy homeostasis and lipid/carbohydrate metabolism. Nutr Rev 63:133–157

    Article  PubMed  Google Scholar 

  • Hwang SL, Liu IM, Tzeng TF, Cheng JT (2005) Activation of imidazoline receptors in adrenal gland to lower plasma glucose in streptozotocin-induced diabetic rats. Diabetologia 48:767–775

    Article  PubMed  CAS  Google Scholar 

  • Im SS, Kang SY, Kim SY, Kim HI, Kim JW, Kim KS, Ahn YH (2005) Glucose-stimulated upregulation of GLUT2 gene is mediated by sterol response element-binding protein-1c in the hepatocytes. Diabetes 54:1684–1691

    Article  PubMed  CAS  Google Scholar 

  • Kazumi T, Odaka H, Hozumi T, Ishida Y, Amano N, Yoshino G (1997) Effects of dietary fructose or glucose on triglyceride production and lipogenic enzyme activities in the liver of Wistar fatty rats, an animal model of NIDDM. Endocr J 44:239–245

    Article  PubMed  CAS  Google Scholar 

  • Keynan O, Mirovsky Y, Dekel S, Gilad VH, Gilad GM (2010) Safety and efficacy of dietary agmatine sulfate in lumbar disc-associated radiculopathy. An open-label, dose-escalating study followed by a randomized, double-blind, placebo-controlled trial. Pain Med 11:356–368

    Article  PubMed  Google Scholar 

  • Ko WC, Liu IM, Chung HH, Cheng JT (2008) Activation of I(2)-imidazoline receptors may ameliorate insulin resistance in fructose-rich chow-fed rats. Neurosci Lett 448:90–93

    Article  PubMed  CAS  Google Scholar 

  • Koo HY, Wallig MA, Chung BH, Nara TY, Cho BH, Nakamura MT (2008) Dietary fructose induces a wide range of genes with distinct shift in carbohydrate and lipid metabolism in fed and fasted rat liver. Biochim Biophys Acta 1782:341–348

    Article  PubMed  CAS  Google Scholar 

  • Lefebvre P, Chinetti G, Fruchart JC, Staels B (2006) Sorting out the roles of PPAR alpha in energy metabolism and vascular homeostasis. J Clin Invest 116:571–580

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Levy JC, Matthews DR, Hermans MP (1998) Correct homeostasis model assessment (HOMA) evaluation uses the computer program. Diabetes Care 21:2191–2192

    Article  PubMed  CAS  Google Scholar 

  • Liao Q, Shi DH, Zheng W, Xu XJ, Yu YH (2010) Antiproliferation of cardamonin is involved in mTOR on aortic smooth muscle cells in high fructose-induced insulin resistance rats. Eur J Pharmacol 641:179–186

    Article  PubMed  CAS  Google Scholar 

  • Liu Y, Song A, Zang S, Wang C, Song G, Li X, Zhu Y, Yu X, Li L, Wang Y, Duan L (2015) Jinlida reduces insulin resistance and ameliorates liver oxidative stress in high-fat fed rats. J Ethnopharmacol 162:244–252

    Article  PubMed  Google Scholar 

  • Lucero D, Miksztowicz V, Macri V, Lopez GH, Friedman S, Berg G, Zago V, Schreier L (2015) Overproduction of altered VLDL in an insulin-resistance rat model: influence of SREBP-1c and PPAR-alpha. Clin Investig Arterioscler.

  • Madani Z, Louchami K, Sener A, Malaisse WJ, Ait YD (2012) Dietary sardine protein lowers insulin resistance, leptin and TNF-alpha and beneficially affects adipose tissue oxidative stress in rats with fructose-induced metabolic syndrome. Int J Mol Med 29:311–318

    PubMed  CAS  Google Scholar 

  • Mathur R, Dutta S, Velpandian T, Mathur SR (2015) Psidium guajava Linn. leaf extract affects hepatic glucose transporter-2 to attenuate early onset of insulin resistance consequent to high fructose intake: an experimental study. Pharmacognosy Res 7:166–175

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Matsuzaka T, Shimano H, Yahagi N, Amemiya-Kudo M, Okazaki H, Tamura Y, Iizuka Y, Ohashi K, Tomita S, Sekiya M, Hasty A, Nakagawa Y, Sone H, Toyoshima H, Ishibashi S, Osuga J, Yamada N (2004) Insulin-independent induction of sterol regulatory element-binding protein-1c expression in the livers of streptozotocin-treated mice. Diabetes 53:560–569

    Article  PubMed  CAS  Google Scholar 

  • Mayes PA (1993) Intermediary metabolism of fructose. Am J Clin Nutr 58:754S–765S

    PubMed  CAS  Google Scholar 

  • Moeschel K, Beck A, Weigert C, Lammers R, Kalbacher H, Voelter W, Schleicher ED, Haring HU, Lehmann R (2004) Protein kinase C-zeta-induced phosphorylation of Ser318 in insulin receptor substrate-1 (IRS-1) attenuates the interaction with the insulin receptor and the tyrosine phosphorylation of IRS-1. J Biol Chem 279:25157–25163

    Article  PubMed  CAS  Google Scholar 

  • Muniyappa R, Sowers JR (2013) Role of insulin resistance in endothelial dysfunction. Rev Endocr Metab Disord 14:5–12

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nagai Y, Nishio Y, Nakamura T, Maegawa H, Kikkawa R, Kashiwagi A (2002) Amelioration of high fructose-induced metabolic derangements by activation of PPARalpha. Am J Physiol Endocrinol Metab 282:E1180–E1190

    Article  PubMed  CAS  Google Scholar 

  • Nagisa Y, Kato K, Watanabe K, Murakoshi H, Odaka H, Yoshikawa K, Sugiyama Y (2003) Changes in glycated haemoglobin levels in diabetic rats measured with an automatic affinity HPLC. Clin Exp Pharmacol Physiol 30:752–758

    Article  PubMed  CAS  Google Scholar 

  • Nagle CA, Klett EL, Coleman RA (2009) Hepatic triacylglycerol accumulation and insulin resistance. J Lipid Res 50(Suppl):S74–S79

    PubMed  PubMed Central  Google Scholar 

  • Narasimhan A, Chinnaiyan M, Karundevi B (2015) Ferulic acid regulates hepatic GLUT2 gene expression in high fat and fructose-induced type-2 diabetic adult male rat. Eur J Pharmacol 761:391–397

    Article  PubMed  CAS  Google Scholar 

  • Nissim I, Horyn O, Daikhin Y, Chen P, Li C, Wehrli SL, Nissim I, Yudkoff M (2014) The molecular and metabolic influence of long term agmatine consumption. J Biol Chem 289:9710–9729

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ozyazgan S, Bicakci B, Ozaydin A, Denizbasi A, Unluer EE, Akkan AG (2003) The effect of agmatine on the vascular reactivity in streptozotocin-diabetic rats. Pharmacol Res 48:133–138

    Article  PubMed  CAS  Google Scholar 

  • Piletz JE, Aricioglu F, Cheng JT, Fairbanks CA, Gilad VH, Haenisch B, Halaris A, Hong S, Lee JE, Li J, Liu P, Molderings GJ, Rodrigues AL, Satriano J, Seong GJ, Wilcox G, Wu N, Gilad GM (2013) Agmatine: clinical applications after 100 years in translation. Drug Discov Today 18:880–893

    Article  PubMed  CAS  Google Scholar 

  • Seifter S, Dayton S, Novic B, Muntwyler E (1950) The estimation of glycogen with the anthrone reagent. Arch Biochem 25:191–200

    PubMed  CAS  Google Scholar 

  • Shawky NM, Shehatou GS, Abdel RM, Suddek GM, Gameil NM (2014) Levocetirizine ameliorates high fructose diet-induced insulin resistance, vascular dysfunction and hepatic steatosis in rats. Eur J Pharmacol 740:353–363

    Article  PubMed  CAS  Google Scholar 

  • Shiomi Y, Yamauchi T, Iwabu M, Okada-Iwabu M, Nakayama R, Orikawa Y, Yoshioka Y, Tanaka K, Ueki K, Kadowaki T (2015) A novel peroxisome proliferator-activated receptor (PPAR)alpha agonist and PPARgamma antagonist, Z-551, ameliorates high-fat diet-induced obesity and metabolic disorders in mice. J Biol Chem 290:14567–14581

    Article  PubMed  CAS  Google Scholar 

  • Su CH, Liu IM, Chung HH, Cheng JT (2009) Activation of I2-imidazoline receptors by agmatine improved insulin sensitivity through two mechanisms in type-2 diabetic rats. Neurosci Lett 457:125–128

    Article  PubMed  CAS  Google Scholar 

  • Taksande BG, Kotagale NR, Patel MR, Shelkar GP, Ugale RR, Chopde CT (2010) Agmatine, an endogenous imidazoline receptor ligand modulates ethanol anxiolysis and withdrawal anxiety in rats. Eur J Pharmacol 637:89–101

    Article  PubMed  CAS  Google Scholar 

  • Teruel T, Hernandez R, Lorenzo M (2001) Ceramide mediates insulin resistance by tumor necrosis factor-alpha in brown adipocytes by maintaining Akt in an inactive dephosphorylated state. Diabetes 50:2563–2571

    Article  PubMed  CAS  Google Scholar 

  • Thomas S, Senthilkumar GP, Sivaraman K, Bobby Z, Paneerselvam S, Harichandrakumar KT (2015) Effect of s-methyl-L-cysteine on oxidative stress, inflammation and insulin resistance in male Wistar rats fed with high fructose diet. Iran J Med Sci 40:45–50

    PubMed  PubMed Central  Google Scholar 

  • Tran LT, Yuen VG, McNeill JH (2009) The fructose-fed rat: a review on the mechanisms of fructose-induced insulin resistance and hypertension. Mol Cell Biochem 332:145–159

    Article  PubMed  CAS  Google Scholar 

  • Vasudevan H, Nagareddy PR, McNeill JH (2006) Gonadectomy prevents endothelial dysfunction in fructose-fed male rats, a factor contributing to the development of hypertension. Am J Physiol Heart Circ Physiol 291:H3058–H3064

    Article  PubMed  CAS  Google Scholar 

  • Virkamaki A, Ueki K, Kahn CR (1999) Protein–protein interaction in insulin signaling and the molecular mechanisms of insulin resistance. J Clin Invest 103:931–943

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang XL, Zhang L, Youker K, Zhang MX, Wang J, LeMaire SA, Coselli JS, Shen YH (2006) Free fatty acids inhibit insulin signaling-stimulated endothelial nitric oxide synthase activation through upregulating PTEN or inhibiting Akt kinase. Diabetes 55:2301–2310

    Article  PubMed  CAS  Google Scholar 

  • Wood IS, Trayhurn P (2003) Glucose transporters (GLUT and SGLT): expanded families of sugar transport proteins. Br J Nutr 89:3–9

    Article  PubMed  CAS  Google Scholar 

  • Yadav H, Jain S, Sinha PR (2007) Antidiabetic effect of probiotic dahi containing Lactobacillus acidophilus and Lactobacillus casei in high fructose fed rats. Nutrition 23:62–68

    Article  PubMed  Google Scholar 

  • Yadav H, Jain S, Yadav M, Sinha PR, Prasad GB, Marotta F (2009) Epigenomic derangement of hepatic glucose metabolism by feeding of high fructose diet and its prevention by rosiglitazone in rats. Dig Liver Dis 41:500–508

    Article  PubMed  CAS  Google Scholar 

  • Yang XC, Reis DJ (1999) Agmatine selectively blocks the N-methyl-d-aspartate subclass of glutamate receptor channels in rat hippocampal neurons. J Pharmacol Exp Ther 288:544–549

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge Dr. Mahmoud Gabr and the staff members of the Research Department, Urology and Nephrology Center, Mansoura University, Egypt, for kindly sharing the facilities of their laboratory and their helpful support.

Conflict of interest

None declared.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maha H. Sharawy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharawy, M.H., El-Awady, M.S., Megahed, N. et al. Attenuation of insulin resistance in rats by agmatine: role of SREBP-1c, mTOR and GLUT-2. Naunyn-Schmiedeberg's Arch Pharmacol 389, 45–56 (2016). https://doi.org/10.1007/s00210-015-1174-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00210-015-1174-6

Keywords

Navigation