Skip to main content

Advertisement

Log in

Synergistic effects of GSK-3β and HDAC inhibitors in intracerebroventricular streptozotocin-induced cognitive deficits in rats

  • Original Article
  • Published:
Naunyn-Schmiedeberg's Archives of Pharmacology Aims and scope Submit manuscript

Abstract

Recent studies suggest the importance of combined treatment of glycogen synthase kinase-3β (GSK-3β) and histone deacetylase (HDAC) inhibition in various in vitro and in vivo models of neurological diseases. Lithium chloride (LiCl) and valproate (VPA), two well-known mood stabilizers, have been reported to act through GSK-3β and HDAC inhibition, respectively. The present study was designed to investigate the potential of low-dose combination of LiCl and VPA in intracerebroventricular streptozotocin (ICV-STZ)-induced cognitive deficits in rats. STZ was injected twice (3 mg/kg ICV) on alternate days (day 1 and day 3) in rats. The ICV-STZ-treated rats received LiCl (60 mg/kg, i.p.), VPA (200 mg/kg, i.p.), and combination of both LiCl (60 mg/kg, i.p.) and VPA (200 mg/kg, i.p.) drugs for a period of 3 weeks. The ICV-STZ administration results in significant memory impairment, elevated oxidative-nitrosative stress, and reduced brain-derived neurotrophic factor (BDNF) levels. Using a battery of behavioral and biochemical tests, we observed that co-treatment of both drugs showed synergistic effect in improving the spatial learning and memory impairment as well as significantly attenuated the oxidative stress markers in STZ-treated rats as compared to either drug alone. Moreover, the combination of both drugs reversed the hyperinsulinemic brain condition and improved the BDNF levels in STZ-treated rats. Based upon these results, it could be suggested that a low-dose combination of LiCl and VPA produces synergistic and more consistent neuroprotective effects in ICV-STZ-induced cognitive deficits in rats.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Agrawal R, Tyagi E, Shukla R, Nath C (2009) A study of brain insulin receptors, AChE activity and oxidative stress in rat model of ICV STZ induced dementia. Neuropharmacology 56:779–787

    Article  CAS  PubMed  Google Scholar 

  • Arabpoor Z, Hamidi G, Rashidi B, Shabrang M, Alaei H, Sharifi MR, Salami M, Dolatabadi HR, Reisi P (2012) Erythropoietin improves neuronal proliferation in dentate gyrus of hippocampal formation in an animal model of Alzheimer's disease. Adv Biomed Res 1:50

  • Arancibia S, Silhol M, Mouliere F, Meffre J, Hollinger I (2008) Protective effect of BDNF against beta-amyloid induced neurotoxicity in vitro and in vivo in rats. Neurobiol Dis 31:316–326

    Article  CAS  PubMed  Google Scholar 

  • Bardai FH, D’Mello SR (2011) Selective toxicity by HDAC3 in neurons: regulation by Akt and GSK3β. J Neurosci 31:1746–1751

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bhat RV, Budd Haeberlein SL, Avila J (2004) Glycogen synthase kinase 3: a drug target for CNS therapies. J Neurochem 89:1313–1317

    Article  CAS  PubMed  Google Scholar 

  • Blalock EM, Geddes JW, Chen KC, Porter NM, Markesbery WR, Landfield PW (2004) Incipient Alzheimer’s disease: microarray correlation analyses reveal major transcriptional and tumor suppressor responses. Proc Natl Acad Sci U S A 101:2173–2178

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Caberlotto L, Carboni L, Zanderigo F, Andreetta F, Andreoli M, Gentile G, Razzoli M (2013) Differential effects of glycogen synthase kinase 3 (GSK3) inhibition by lithium or selective inhibitors in the central nervous system. Naunyn Schmiedebergs Arch Pharmacol 386:893–903

    Article  CAS  PubMed  Google Scholar 

  • Chiu CT, Liu G, Leeds P, Chuang DM (2011) Combined treatment with the mood stabilizers lithium and valproate produces multiple beneficial effects in transgenic mouse models of Huntington’s disease. Neuropsychopharmacology 36:2406–2421

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Craft S, Watson GS (2004) Insulin and neuro-degenerative disease: shared and specific mechanisms. Lancet Neurol 3:169–178

    Article  CAS  PubMed  Google Scholar 

  • Cui J, Shao L, Young LT, Wang JF (2007) Role of glutathione in neuroprotective effects of mood stabilizing drugs lithium and valproate. Neuroscience 144:1447–1453

    Article  CAS  PubMed  Google Scholar 

  • Dash PK, Orsi SA, Zhang M, Grill RJ, Pati S, Zhao J, Moore AN (2010) Valproate administered after traumatic brain injury provides neuroprotection and improves cognitive function in rats. PLoS One 5(6):e11383

    Article  PubMed Central  PubMed  Google Scholar 

  • De la Monte SM, Wands JR (2005) Review of insulin and insulin-like growth factor expression, signaling, and malfunction in the central nervous system: relevance to Alzheimer’s disease. J Alzheimers Dis 7:45–61

    PubMed  Google Scholar 

  • Deshmukh R, Sharma V, Mehan S, Sharma N, Bedi KL (2009) Amelioration of intracerebroventricular streptozotocin induced cognitive dysfunction and oxidative stress by vinpocetine—a PDE1 inhibitor. Eur J Pharmacol 620:49–56

    Article  CAS  PubMed  Google Scholar 

  • Ellman GL (1959) Tissue sulfhydryl groups. Arch Biochem Biophys 82:70–77

    Article  CAS  PubMed  Google Scholar 

  • Ellman GL, Courtney KD, Andres V, Featherstone RM (1961) A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol 7:88–95

    Article  CAS  PubMed  Google Scholar 

  • Feng HL, Leng Y, Ma CH, Zhang J, Ren M, Chuang DM (2008) Combined lithium and valproate treatment delays disease onset, reduces neurological deficits and prolongs survival in an amyotrophic lateral sclerosis mouse model. Neurosci 155:567–572

    Article  CAS  Google Scholar 

  • Frey BN, Valvassori SS, Reus GZ, Martins MR, Petronilho FC, Bardini K, Dal-Pizzol F, Kapczinski F, Quevedo J (2006) Effects of lithium and valproate on amphetamine-induced oxidative stress generation in an animal model of mania. J Psychiatry Neurosci 31:326–332

    PubMed Central  PubMed  Google Scholar 

  • Göttlicher M, Minucci S, Zhu P, Kramer OH, Schimpf A, Giavara S, Sleeman JP, Lo Coco F, Nervi C, Pelicci PG, Heinzel T (2001) Valproic acid defines a novel class of HDAC inhibitors inducing differentiation of transformed cells. EMBO J 20:6969–6978

    Article  PubMed Central  PubMed  Google Scholar 

  • Green LC, Wagner DA, Glgowski J, Skipper PL, Wishnok JS, Tannebaum SR (1982) Analysis of nitrate, nitrite and [15 N] nitrate in biological fluids. Ann Biochem Exp Med 126:131–135

    Article  CAS  Google Scholar 

  • Grundke-Iqbal I, Iqbal K, Tung YC, Quinlan M, Wisniewski HM, Binder LI (1986) Abnormal phosphorylation of the microtubule-associated protein tau (tau) in Alzheimer cytoskeletal pathology. Proc Natl Acad Sci U S A 83:4913–4917

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Guan JS, Haggarty SJ, Giacometti E, Dannenberg JH, Joseph N, Gao J, Nieland TJ, Zhou Y, Wang X, Mazitschek R, Bradner JE, DePinho RA, Jaenisch R, Tsai LH (2009) HDAC2 negatively regulates memory formation and synaptic plasticity. Nature 459:55–60

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Khan MB, Khan MM, Khan A, Ahmed ME, Ishrat T, Tabassum R, Vaibhav K, Ahmad A, Islam F (2012) Naringenin ameliorates Alzheimer’s disease (AD)-type neurodegeneration with cognitive impairment (AD-TNDCI) caused by the intracerebroventricular-streptozotocin in rat model. Neurochem Int 61:1081–1093

    Article  CAS  PubMed  Google Scholar 

  • Klein PS, Melton DA (1996) Molecular mechanism for the effect of lithium on development. Proc Natl Acad Sci U S A 93:8455–8459

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kumar A, Sharma S, Prashar A, Deshmukh R (2014) Effect of licofelone—a dual COX/5-LOX inhibitor in intracerebroventricular streptozotocin-induced behavioral and biochemical abnormalities in rats. J Mol Neurosci. doi:10.1007/s12031-014-0414-4

    Google Scholar 

  • Laske C, Stransky E, Leyhe T, Eschweiler GW, Wittorf A, Richartz E, Bartels M, Buchkremer G, Schott K (2006) Stage-dependent BDNF serum concentrations in Alzheimer’s disease. J Neural Transm 113:1217–1224

    Article  CAS  PubMed  Google Scholar 

  • Leng Y, Liang MH, Ren M, Marinova Z, Leeds P, Chuang DM (2008) Synergistic neuroprotective effects of lithium and valproic acid or other histone deacetylase inhibitors in neurons: roles of glycogen synthase kinase-3 inhibition. J Neurosci 28:2576–2588

    Article  CAS  PubMed  Google Scholar 

  • Leroy K, Yilmaz Z, Brion JP (2007) Increased level of active GSK-3beta in Alzheimer’s disease and accumulation in argyrophilic grains and in neurones at different stages of neurofibrillary degeneration. Neuropathol Appl Neurobiol 33:43–55

    CAS  PubMed  Google Scholar 

  • Lindvall O, Kokaia Z, Bengzon J, Elmér E, Kokaia M (1994) Neurotrophins and brain insults. Trends Neurosci 17:490–496

    Article  CAS  PubMed  Google Scholar 

  • Loscher W, Fisher JE, Nau H, Hönack D (1989) Valproic acid in amygdala-kindled rats: alterations in anticonvulsant efficacy, adverse effects and drug and metabolite levels in various brain regions during chronic treatment. J Pharmacol Exp Ther 250:1067–1078

    CAS  PubMed  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    CAS  PubMed  Google Scholar 

  • Lubin FD, Roth TL, Sweatt JD (2008) Epigenetic regulation of BDNF gene transcription in the consolidation of fear memory. J Neurosci 28:10576–10586

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mangialasche F, Polidori MC, Monastero R, Ercolani S, Camarda C, Cecchetti R (2009) Biomarkers of oxidative and nitrosative damage in Alzheimer’s disease and mild cognitive impairment. Aging Res Rev 8:285–305

    Article  CAS  Google Scholar 

  • Markesbery RS, Kamat PK, Nath C, Shukla R (2012) A study on neuroinflammation and NMDA receptor function in STZ (ICV) induced memory impaired rats. J Neuroimmunol 254:1–9

    Google Scholar 

  • Marlatt MW, Lucassen PJ, Perry G, Smith MA, Zhu X (2008) Alzheimer’s disease: cerebrovascular dysfunction, oxidative stress, and advanced clinical therapies. J Alzheimers Dis 15:199–210

    PubMed Central  CAS  PubMed  Google Scholar 

  • McQuown SC, Barrett RM, Matheos DP, Post RJ, Rogge GA, Alenghat T, Mullican SE, Jones S, Rusche JR, Lazar MA, Wood MA (2011) HDAC3 is a critical negative regulator of long-term memory formation. J Neurosci 31:764–774

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mesulam MM, Asuncion Moran M (1987) Cholinesterases within neurofibrillary tangles related to age and Alzheimer’s disease. Ann Neurol 22:223–228

    Article  CAS  PubMed  Google Scholar 

  • Miranda MI, Ferreira G, Ramirez-Lugo L, Bermudez-Rattoni F (2003) Role of cholinergic system on the construction of memories: taste memory encoding. Neurobiol Learn Mem 80:211–222

    Article  CAS  PubMed  Google Scholar 

  • Morris RGM (1984) Development of a water-maze procedure for studying spatial learning in the rats. J Neurosci Methods 11:47–60

    Article  CAS  PubMed  Google Scholar 

  • Padurariu M, Ciobica A, Hritcu L, Stoica B, Bild W, Stefanescu C (2010) Changes of some oxidative stress markers in the serum of patients with mild cognitive impairment and Alzheimer’s disease. Neurosci Lett 469:6–10

    Article  CAS  PubMed  Google Scholar 

  • Pappolla MA, Chyan YJ, Omar RA, Hsiao K, Perry G, Smith MA, Bozner P (1998) Evidence of oxidative stress and in vivo neurotoxicity of β-amyloid in a transgenic mouse model of Alzheimer’s disease: a chronic oxidative paradigm for testing antioxidant therapies in vivo. Am J Pathol 152:871–877

    PubMed Central  CAS  PubMed  Google Scholar 

  • Parr C, Carzaniga R, Gentleman SM, Van Leuven F, Walter J, Sastre M (2012) Glycogen synthase kinase 3 inhibition promotes lysosomal biogenesis and autophagic degradation of the amyloid-β precursor protein. Mol Cell Biol 32:4410–4418

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Paxinos G, Watson C (1986) The rat brain in stereotaxic coordinates, 2nd edn. Academic, San Diego

    Google Scholar 

  • Pei JJ, Tanaka T, Tung YC, Braak E, Iqbal K, Grundke-Iqbal I (1997) Distribution, levels, and activity of glycogen synthase kinase-3 in the Alzheimer disease brain. J Neuropathol Exp Neurol 56:70–78

    Article  CAS  PubMed  Google Scholar 

  • Phiel CJ, Zhang F, Huang EY, Guenther MG, Lazar MA, Klein PS (2001) Histone deacetylase is a direct target of valproic acid, a potent anticonvulsant, mood stabilizer, and teratogen. J Biol Chem 276:36734–36741

    Article  CAS  PubMed  Google Scholar 

  • Phiel CJ, Wilson CA, Lee VM, Klein PS (2003) GSK-3 alpha regulates production of Alzheimer’s disease amyloid-beta peptides. Nature 423:435–443

    Article  CAS  PubMed  Google Scholar 

  • Phillips HS, Hains JM, Armanini M, Laramee GR, Johnson SA (1991) BDNF mRNA is decreased in the hippocampus of individuals with Alzheimer’s disease. Neuron 7:695–702

    Article  CAS  PubMed  Google Scholar 

  • Plaschke K, Kopitz J, Siegelin M, Schliebs R, Salkovic-Petrisic M, Riederer P, Hoyer S (2010) Insulin-resistant brain state after intracerebroventricular streptozotocin injection exacerbates Alzheimer-like changes in Tg2576 AbetaPP-overexpressing mice. J Alzheimers Dis 19:691–704

    CAS  PubMed  Google Scholar 

  • Ponce-Lopez T, Liy-Salmeron G, Hong E, Meneses A (2011) Lithium, phenserine, memantine and pioglitazone reverse memory deficit and restore phospho-GSK3β decreased in hippocampus in intracerebroventricular streptozotocin induced memory deficit model. Brain Res 1426:73–85

    Article  CAS  PubMed  Google Scholar 

  • Qiu WQ, Walsh DM, Ye Z, Vekrellis K, Zhang J, Podlisny MB, Rosner MR, Safavi A, Hersh LB, Selkoe DJ (1998) Insulin-degrading enzyme regulates extracellular levels of amyloid beta-protein by degradation. J Biol Chem 273:32730–32738

    Article  CAS  PubMed  Google Scholar 

  • Rai S, Kamat PK, Nath C, Shukla R (2012) A study on neuroinflammation and NMDA receptor function in STZ (ICV) induced memory impaired rats. J Neuroimmunol 254:1–9

    Article  PubMed  Google Scholar 

  • Rees T, Hammond PI, Soreq H, Younkin S, Brimijoin S (2003) Acetylcholinesterase promotes beta-amyloid plaques in cerebral cortex. Neurobiol Aging 24:777–787

    Article  CAS  PubMed  Google Scholar 

  • Ren M, Senatorov VV, Chen RW, Chuang DM (2003) Post-insult treatment with lithium reduces brain damage and facilitates neurological recovery in a rat ischemia/reperfusion model. Proc Natl Acad Sci U S A 100:6210–6215

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ren M, Leng Y, Jeong M, Leeds PR, Chuang DM (2004) Valproic acid reduces brain damage induced by transient focal cerebral ischemia in rats: potential roles of histone deacetylase inhibition and heat shock protein induction. J Neurochem 89:1358–1367

    Article  CAS  PubMed  Google Scholar 

  • Ryves JW, Dalton EC, Harwood AJ, Williams RS (2005) GSK-3 activity in neocortical cells is inhibited by lithium but not carbamazepine or valproic acid. Bipolar Disord 7:260–265

    Article  PubMed Central  CAS  Google Scholar 

  • Sereno L, Coma M, Rodriguez M, Sanchez-Ferrer P, Sanchez MB, Gich I, Agullo JM, Perez M, Avila J, Guardia-Laguarta C, Clarimón J, Lleo A, Gomez-Isla T (2009) A novel GSK-3beta inhibitor reduces Alzheimer’s pathology and rescues neuronal loss in vivo. Neurobiol Dis 35:359–367

    Article  CAS  PubMed  Google Scholar 

  • Shao L, Young LT, Wang JF (2005) Chronic treatment with mood stabilizers lithium and valproate prevents excitotoxicity by inhibiting oxidative stress in rat cerebral cortical cells. Biol Psychiatry 58:879–884

    Article  CAS  PubMed  Google Scholar 

  • Sharma M, Gupta YK (2003) Effect of alpha lipoic acid on intracerebroventricular streptozotocin model of cognitive impairment in rats. Eur Neuropsychopharmacol 13:241–247

    Article  CAS  PubMed  Google Scholar 

  • Sharma S, Taliyan R (2014) Neuroprotective role of Indirubin-3′-monoxime, a GSKβ inhibitor in high fat diet induced cognitive impairment in mice. Biochem Biophys Res Commun 452:1009–1015

    Article  CAS  PubMed  Google Scholar 

  • Sharma V, Bala A, Deshmukh R, Bedi KL, Sharma PL (2012) Neuroprotective effect of RO-20-1724-a phosphodiesterase4 inhibitor against intracerebroventricular streptozotocin induced cognitive deficit and oxidative stress in rats. Pharmacol Biochem Behav 101:239–245

    Article  CAS  PubMed  Google Scholar 

  • Sharma S, Kumar K, Deshmukh R, Sharma PL (2013) Phosphodiesterases: regulators of cyclic nucleotide signals and novel molecular target for movement disorders. Eur J Pharmacol 714:486–497

    Article  CAS  PubMed  Google Scholar 

  • Sharma S, Taliyan R, Ramagiri S (2014). Histone deacetylase inhibitor, trichostatin A, improves learning and memory in high-fat diet-induced cognitive deficits in mice. J Mol Neurosci. doi:10.1007/s12031-014-0461-x

  • Shonesy BC, Thiruchelvam K, Parameshwaran K, Rahman EA, Karuppagounder SS, Huggins KW, Pinkert CA, Amin R, Dhanasekaran M, Suppiramaniam V (2012) Central insulin resistance and synaptic dysfunction in intracerebroventricular-streptozotocin injected rodents. Neurobiol Aging 33:5–18

    Article  Google Scholar 

  • Siegel GJ, Chauhan NB (2000) Neurotrophic factors in Alzheimer’s and Parkinson’s disease brain. Brain Res Brain Res Rev 33:199–227

    Article  CAS  PubMed  Google Scholar 

  • Su Y, Ryder J, Li B, Wu X, Fox N, Solenberg P, Brune K, Paul S, Zhou Y, Liu F, Ni B (2004) Lithium, a common drug for bipolar disorder treatment, regulates amyloid-beta precursor protein processing. Biochemistry 43:6899–6908

    Article  CAS  PubMed  Google Scholar 

  • Sun X, Sato S, Murayama O, Murayama M, Park JM, Yamaguchi H, Takashima A (2002) Lithium inhibits amyloid secretion in COS7 cells transfected with amyloid precursor protein C100. Neurosci Lett 321:61–64

    Article  CAS  PubMed  Google Scholar 

  • Vekrellis K, Ye Z, Qiu WQ, Walsh D, Hartley D, Chesneau V, Rosner MR, Selkoe DJ (2000) Neurons regulate extracellular levels of amyloid beta-protein via proteolysis by insulin-degrading enzyme. J Neurosci 20:1657–1665

    CAS  PubMed  Google Scholar 

  • Wills ED (1996) Mechanism of lipid peroxide formation in animal. Biochem J 99:667–676

    Google Scholar 

  • Yasuda S, Liang MH, Marinova Z, Yahyavi A, Chuang DM (2009) The mood stabilizers lithium and valproate selectively activate the promoter IV of brain-derived neurotrophic factor in neurons. Mol Psychiatry 14:51–59

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors are thankful to University Grants Commission (UGC), New Delhi, India, and BITS, Pilani, India, for their financial support for this study. The authors are highly thankful to Dr. B. Pal (anesthesiologist) (Birla Saravajanik Hospital, Pilani) for his support and guidance during anesthesia of animals.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajeev Taliyan.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 556 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, S., Taliyan, R. Synergistic effects of GSK-3β and HDAC inhibitors in intracerebroventricular streptozotocin-induced cognitive deficits in rats. Naunyn-Schmiedeberg's Arch Pharmacol 388, 337–349 (2015). https://doi.org/10.1007/s00210-014-1081-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00210-014-1081-2

Keywords

Navigation