Skip to main content

Advertisement

Log in

TRPV4 as a therapeutic target for joint diseases

  • Review
  • Published:
Naunyn-Schmiedeberg's Archives of Pharmacology Aims and scope Submit manuscript

Abstract

Biomechanical factors play a critical role in regulating the physiology as well as the pathology of multiple joint tissues and have been implicated in the pathogenesis of osteoarthritis. Therefore, the mechanisms by which cells sense and respond to mechanical signals may provide novel targets for the development of disease-modifying osteoarthritis drugs (DMOADs). Transient receptor potential vanilloid 4 (TRPV4) is a Ca2+-permeable cation channel that serves as a sensor of mechanical or osmotic signals in several musculoskeletal tissues, including cartilage, bone, and synovium. The importance of TRPV4 in joint homeostasis is apparent in patients harboring TRPV4 mutations, which result in the development of a spectrum of skeletal dysplasias and arthropathies. In addition, the genetic knockout of Trpv4 results in the development of osteoarthritis and decreased osteoclast function. In engineered cartilage replacements, chemical activation of TRPV4 can reproduce many of the anabolic effects of mechanical loading to accelerate tissue growth and regeneration. Overall, TRPV4 plays a key role in transducing mechanical, pain, and inflammatory signals within joint tissues and thus is an attractive therapeutic target to modulate the effects of joint diseases. In pathological conditions in the joint, when the delicate balance of TRPV4 activity is altered, a variety of different tools could be utilized to directly or indirectly target TRPV4 activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Akagi R, Sasho T, Saito M, Endo J, Yamaguchi S, Muramatsu Y, Mukoyama S, Akatsu Y, Katsuragi J, Fukawa T, Takahashi K (2014) Effective knock down of matrix metalloproteinase-13 by an intra-articular injection of small interfering RNA (siRNA) in a murine surgically-induced osteoarthritis model. J Orthop Res 32:1175–1180

    CAS  PubMed  Google Scholar 

  • Alenius GM, Jonsson S, Wallberg Jonsson S, Ny A, Rantapaa Dahlqvist S (2001) Matrix metalloproteinase 9 (MMP-9) in patients with psoriatic arthritis and rheumatoid arthritis. Clin Exp Rheumatol 19:760

    CAS  PubMed  Google Scholar 

  • Alessandri-Haber N, Joseph E, Dina OA, Liedtke W, Levine JD (2005) TRPV4 mediates pain-related behavior induced by mild hypertonic stimuli in the presence of inflammatory mediator. Pain 118:70–79

    CAS  PubMed  Google Scholar 

  • Amadesi S, Nie J, Vergnolle N, Cottrell GS, Grady EF, Trevisani M, Manni C, Geppetti P, McRoberts JA, Ennes H, Davis JB, Mayer EA, Bunnett NW (2004) Protease-activated receptor 2 sensitizes the capsaicin receptor transient receptor potential vanilloid receptor 1 to induce hyperalgesia. J Neurosci 24:4300–4312

    CAS  PubMed  Google Scholar 

  • Barbour KE, Helmick CG, Theis KA, Murphy LB, Hootman JM, Brady TJ, Cheng YJ (2013) Prevalence of Doctor-diagnosed arthritis and arthritis-attributable activity limitation—United States, 2010–2012. In: Moolenaar RL (ed) Morbidity and mortality weekly report centers for disease control and prevention, Washington, DC, pp. 869–873

  • Bignold LP, Lykke AW (1975) Increased vascular permeability evoked by mechanical trauma and haemarthrosis in synovium of the rat. Pathology 7:263–271

    CAS  PubMed  Google Scholar 

  • Bluteau G, Conrozier T, Mathieu P, Vignon E, Herbage D, Mallein-Gerin F (2001) Matrix metalloproteinase-1, −3, −13 and aggrecanase-1 and −2 are differentially expressed in experimental osteoarthritis. Biochim Biophys Acta 1526:147–158

    CAS  PubMed  Google Scholar 

  • Bohm SK, Khitin LM, Grady EF, Aponte G, Payan DG, Bunnett NW (1996) Mechanisms of desensitization and resensitization of proteinase-activated receptor-2. J Biol Chem 271:22003–22016

    CAS  PubMed  Google Scholar 

  • Bourque CW, Guilak F, Liedtke W (2012) A TRP that makes us feel hyper. J Physiol 590:1779–1780

    PubMed Central  CAS  PubMed  Google Scholar 

  • Brama PA, TeKoppele JM, Beekman B, van Weeren PR, Barneveld A (1998) Matrix metalloproteinase activity in equine synovial fluid: influence of age, osteoarthritis, and osteochondrosis. Ann Rheum Dis 57:697–699

    PubMed Central  CAS  PubMed  Google Scholar 

  • Brierley SM, Hughes PA, Page AJ, Kwan KY, Martin CM, O’Donnell TA, Cooper NJ, Harrington AM, Adam B, Liebregts T, Holtmann G, Corey DP, Rychkov GY, Blackshaw LA (2009) The ion channel TRPA1 is required for normal mechanosensation and is modulated by algesic stimuli. Gastroenterology 137:e2083

    Google Scholar 

  • Bushell T (2007) The emergence of proteinase-activated receptor-2 as a novel target for the treatment of inflammation-related CNS disorders. J Physiol 581:7–16

    PubMed Central  CAS  PubMed  Google Scholar 

  • Busso N, Frasnelli M, Feifel R, Cenni B, Steinhoff M, Hamilton J, So A (2007) Evaluation of protease-activated receptor 2 in murine models of arthritis. Arthritis Rheum 56:101–107

    CAS  PubMed  Google Scholar 

  • Camacho N, Krakow D, Johnykutty S, Katzman PJ, Pepkowitz S, Vriens J, Nilius B, Boyce BF, Cohn DH (2010) Dominant TRPV4 mutations in nonlethal and lethal metatropic dysplasia. Am J Med Genet A 152A:1169–1177

    CAS  PubMed  Google Scholar 

  • Cameron TL, Belluoccio D, Farlie PG, Brachvogel B, Bateman JF (2009) Global comparative transcriptome analysis of cartilage formation in vivo. BMC Dev Biol 9:20

    PubMed Central  PubMed  Google Scholar 

  • Cattaruzza F, Spreadbury I, Miranda-Morales M, Grady EF, Vanner S, Bunnett NW (2010) Transient receptor potential ankyrin-1 has a major role in mediating visceral pain in mice. Am J Physiol Gastrointest Liver Physiol 298:G81–91

    PubMed Central  CAS  PubMed  Google Scholar 

  • Cella G, Fiocco U, Palla A (1997) The thrombin-antithrombin complex in rheumatoid arthritis. J Rheumatol 24:410

    CAS  PubMed  Google Scholar 

  • Cenac N, Altier C, Chapman K, Liedtke W, Zamponi G, Vergnolle N (2008) Transient receptor potential vanilloid-4 has a major role in visceral hypersensitivity symptoms. Gastroenterology 135:937–946, 946 e931-932

    CAS  PubMed  Google Scholar 

  • Cevikbas F, Wang X, Akiyama T, Kempkes C, Savinko T, Antal A, Kukova G, Buhl T, Ikoma A, Buddenkotte J, Soumelis V, Feld M, Alenius H, Dillon SR, Carstens E, Homey B, Basbaum A, Steinhoff M (2014) A sensory neuron-expressed IL-31 receptor mediates T helper cell-dependent itch: Involvement of TRPV1 and TRPA1. J Allergy Clin Immunol 133:448–460

    PubMed Central  CAS  PubMed  Google Scholar 

  • Chen Y, Yang C, Wang ZJ (2011) Proteinase-activated receptor 2 sensitizes transient receptor potential vanilloid 1, transient receptor potential vanilloid 4, and transient receptor potential ankyrin 1 in paclitaxel-induced neuropathic pain. Neuroscience 193:440–451

    CAS  PubMed  Google Scholar 

  • Chen Y, Williams SH, McNulty AL, Hong JH, Lee SH, Rothfusz NE, Parekh PK, Moore C, Gereau RW, Taylor AB, Wang F, Guilak F, Liedtke W (2013) Temporomandibular joint pain: a critical role for Trpv4 in the trigeminal ganglion. Pain 154:1295–1304

    PubMed Central  CAS  PubMed  Google Scholar 

  • Chen Y, Kanju P, Fang Q, Lee S, Parekh P, Lee W, Moore C, Brenner D, Gereau R, Wang F, Liedtke W (2014) TRPV4 is necessary for trigeminal irritant pain and functions as a cellular formalin receptor. Pain. doi:10.1016/j.pain.2014.09.033

  • Choi HM, Lee YA, Lee SH, Hong SJ, Hahm DH, Choi SY, Yang HI, Yoo MC, Kim KS (2009) Adiponectin may contribute to synovitis and joint destruction in rheumatoid arthritis by stimulating vascular endothelial growth factor, matrix metalloproteinase-1, and matrix metalloproteinase-13 expression in fibroblast-like synoviocytes more than proinflammatory mediators. Arthritis Res Ther 11:R161

    PubMed Central  PubMed  Google Scholar 

  • Clark AL, Votta BJ, Kumar S, Liedtke W, Guilak F (2010) Chondroprotective role of the osmotically sensitive ion channel transient receptor potential vanilloid 4: age- and sex-dependent progression of osteoarthritis in Trpv4-deficient mice. Arthritis Rheum 62:2973–2983

    PubMed Central  CAS  PubMed  Google Scholar 

  • Clark AK, Grist J, Al-Kashi A, Perretti M, Malcangio M (2012) Spinal cathepsin S and fractalkine contribute to chronic pain in the collagen-induced arthritis model. Arthritis Rheum 64:2038–2047

    CAS  PubMed  Google Scholar 

  • Coelho AM, Ossovskaya V, Bunnett NW (2003) Proteinase-activated receptor-2: physiological and pathophysiological roles. Curr Med Chem Cardiovasc Hematol Agents 1:61–72

    CAS  PubMed  Google Scholar 

  • Connor AM, Mahomed N, Gandhi R, Keystone EC, Berger SA (2012) TNFalpha modulates protein degradation pathways in rheumatoid arthritis synovial fibroblasts. Arthritis Res Ther 14:R62

    PubMed Central  CAS  PubMed  Google Scholar 

  • Cowin SC, Weinbaum S, Zeng Y (1995) A case for bone canaliculi as the anatomical site of strain generated potentials. J Biomech 28:1281–1297

    CAS  PubMed  Google Scholar 

  • Dai Y, Moriyama T, Higashi T, Togashi K, Kobayashi K, Yamanaka H, Tominaga M, Noguchi K (2004) Proteinase-activated receptor 2-mediated potentiation of transient receptor potential vanilloid subfamily 1 activity reveals a mechanism for proteinase-induced inflammatory pain. J Neurosci 24:4293–4299

    CAS  PubMed  Google Scholar 

  • Dai Y, Wang S, Tominaga M, Yamamoto S, Fukuoka T, Higashi T, Kobayashi K, Obata K, Yamanaka H, Noguchi K (2007) Sensitization of TRPA1 by PAR2 contributes to the sensation of inflammatory pain. J Clin Invest 117:1979–1987

    PubMed Central  CAS  PubMed  Google Scholar 

  • Denadai-Souza A, Martin L, de Paula MA, de Avellar MC, Muscara MN, Vergnolle N, Cenac N (2012) Role of transient receptor potential vanilloid 4 in rat joint inflammation. Arthritis Rheum 64:1848–1858

    CAS  PubMed  Google Scholar 

  • Dery O, Corvera CU, Steinhoff M, Bunnett NW (1998) Proteinase-activated receptors: novel mechanisms of signaling by serine proteases. Am J Physiol 274:C1429–1452

    CAS  PubMed  Google Scholar 

  • Eleswarapu SV, Athanasiou KA (2013) TRPV4 channel activation improves the tensile properties of self-assembled articular cartilage constructs. Acta Biomater 9:5554–5561

    PubMed Central  CAS  PubMed  Google Scholar 

  • Erickson GR, Northrup DL, Guilak F (2003) Hypo-osmotic stress induces calcium-dependent actin reorganization in articular chondrocytes. Osteoarthritis Cartilage 11:187–197

    CAS  PubMed  Google Scholar 

  • Galasso O, Familiari F, De Gori M, Gasparini G (2012) Recent findings on the role of gelatinases (matrix metalloproteinase-2 and −9) in osteoarthritis. Adv Orthop 2012:834208

    PubMed Central  PubMed  Google Scholar 

  • Goldbach-Mansky R, Suson S, Wesley R, Hack CE, El-Gabalawy HS, Tak PP (2005) Raised granzyme B levels are associated with erosions in patients with early rheumatoid factor positive rheumatoid arthritis. Ann Rheum Dis 64:715–721

    PubMed Central  CAS  PubMed  Google Scholar 

  • Grace MS, Lieu T, Darby B, Abogadie FC, Veldhuis N, Bunnett NW, McIntyre P (2014) The tyrosine kinase inhibitor bafetinib inhibits PAR2-induced activation of TRPV4 channels in vitro and pain in vivo. Br J Pharmacol 171:3881–3894

    CAS  PubMed  Google Scholar 

  • Grant AD, Cottrell GS, Amadesi S, Trevisani M, Nicoletti P, Materazzi S, Altier C, Cenac N, Zamponi GW, Bautista-Cruz F, Lopez CB, Joseph EK, Levine JD, Liedtke W, Vanner S, Vergnolle N, Geppetti P, Bunnett NW (2007) Protease-activated receptor 2 sensitizes the transient receptor potential vanilloid 4 ion channel to cause mechanical hyperalgesia in mice. J Physiol 578:715–733

    PubMed Central  CAS  PubMed  Google Scholar 

  • Guilak F (2011) Biomechanical factors in osteoarthritis. Best Pract Res Clin Rheumatol 25:815–823

    PubMed Central  PubMed  Google Scholar 

  • Guilak F, Hung CT (2005) Physical regulation of cartilage metabolism. In: Mow VC, Huiskes R (eds) Basic orthopaedic biomechanics and mechanobiology, 3rd edn. Lippincott, Williams & Wilkins, Philedalphia, pp 259–300

    Google Scholar 

  • Guilak F, Butler DL, Goldstein SA, Baaijens FP (2014) Biomechanics and mechanobiology in functional tissue engineering. J Biomech 47:1933–1940

    PubMed  Google Scholar 

  • Gupta K, Shukla M, Cowland JB, Malemud CJ, Haqqi TM (2007) Neutrophil gelatinase-associated lipocalin is expressed in osteoarthritis and forms a complex with matrix metalloproteinase 9. Arthritis Rheum 56:3326–3335

    CAS  PubMed  Google Scholar 

  • Hasegawa M, Nakoshi Y, Iino T, Sudo A, Segawa T, Maeda M, Yoshida T, Uchida A (2009) Thrombin-cleaved osteopontin in synovial fluid of subjects with rheumatoid arthritis. J Rheumatol 36:240–245

    CAS  PubMed  Google Scholar 

  • Hasegawa M, Segawa T, Maeda M, Yoshida T, Sudo A (2011) Thrombin-cleaved osteopontin levels in synovial fluid correlate with disease severity of knee osteoarthritis. J Rheumatol 38:129–134

    CAS  PubMed  Google Scholar 

  • Hashimoto Y, Kakegawa H, Narita Y, Hachiya Y, Hayakawa T, Kos J, Turk V, Katunuma N (2001) Significance of cathepsin B accumulation in synovial fluid of rheumatoid arthritis. Biochem Biophys Res Commun 283:334–339

    CAS  PubMed  Google Scholar 

  • Hdud IM, El-Shafei AA, Loughna P, Barrett-Jolley R, Mobasheri A (2012) Expression of Transient Receptor Potential Vanilloid (TRPV) channels in different passages of articular chondrocytes. Int J Mol Sci 13:4433–4445

    PubMed Central  CAS  PubMed  Google Scholar 

  • Hdud IM, Mobasheri A, Loughna PT (2014) Effects of cyclic equibiaxial mechanical stretch on alpha-BK and TRPV4 expression in equine chondrocytes. Springer Plus 3:59

    PubMed Central  PubMed  Google Scholar 

  • Helyes Z, Sandor K, Borbely E, Tekus V, Pinter E, Elekes K, Toth DM, Szolcsanyi J, McDougall JJ (2010) Involvement of transient receptor potential vanilloid 1 receptors in protease-activated receptor-2-induced joint inflammation and nociception. Eur J Pain 14:351–358

    CAS  PubMed  Google Scholar 

  • Horwich MD, Zamore PD (2008) Design and delivery of antisense oligonucleotides to block microRNA function in cultured Drosophila and human cells. Nat Protoc 3:1537–1549

    PubMed Central  CAS  PubMed  Google Scholar 

  • Hu F, Zhu W, Wang L (2013) MicroRNA-203 up-regulates nitric oxide expression in temporomandibular joint chondrocytes via targeting TRPV4. Arch Oral Biol 58:192–199

    CAS  PubMed  Google Scholar 

  • Itoh Y, Hatano N, Hayashi H, Onozaki K, Miyazawa K, Muraki K (2009) An environmental sensor, TRPV4 is a novel regulator of intracellular Ca2+ in human synoviocytes. Am J Physiol Cell Physiol 297:C1082–1090

    CAS  PubMed  Google Scholar 

  • Jablonski CL, Ferguson S, Pozzi A, Clark AL (2014) Integrin alpha1beta1 participates in chondrocyte transduction of osmotic stress. Biochem Biophys Res Commun 445:184–190

    PubMed Central  CAS  PubMed  Google Scholar 

  • Jia X, Zhang H, Cao X, Yin Y, Zhang B (2014) Activation of TRPV1 mediates thymic stromal lymphopoietin release via the Ca(2+)/NFAT pathway in airway epithelial cells. FEBS Lett 588:3047–3054

    CAS  PubMed  Google Scholar 

  • Jing D, Baik AD, Lu XL, Zhou B, Lai X, Wang L, Luo E, Guo XE (2014) In situ intracellular calcium oscillations in osteocytes in intact mouse long bones under dynamic mechanical loading. FASEB J 28:1582–1592

    CAS  PubMed  Google Scholar 

  • Johnson VL, Hunter DJ (2014) The epidemiology of osteoarthritis. Best Pract Res Clin Rheumatol 28:5–15

    PubMed  Google Scholar 

  • Kanke T, Takizawa T, Kabeya M, Kawabata A (2005) Physiology and pathophysiology of proteinase-activated receptors (PARs): PAR-2 as a potential therapeutic target. J Pharmacol Sci 97:38–42

    CAS  PubMed  Google Scholar 

  • Kato K, Morita I (2011) Acidosis environment promotes osteoclast formation by acting on the last phase of preosteoclast differentiation: a study to elucidate the action points of acidosis and search for putative target molecules. Eur J Pharmacol 663:27–39

    CAS  PubMed  Google Scholar 

  • Kawabata A (2002) PAR-2: structure, function and relevance to human diseases of the gastric mucosa. Expert Rev Mol Med 4:1–17

    PubMed  Google Scholar 

  • Kiselyov K, Soyombo A, Muallem S (2007) TRPpathies. J Physiol 578:641–653

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kochukov MY, McNearney TA, Fu Y, Westlund KN (2006) Thermosensitive TRP ion channels mediate cytosolic calcium response in human synoviocytes. Am J Physiol Cell Physiol 291:C424–432

    CAS  PubMed  Google Scholar 

  • Kochukov MY, McNearney TA, Yin H, Zhang L, Ma F, Ponomareva L, Abshire S, Westlund KN (2009) Tumor necrosis factor-alpha (TNF-alpha) enhances functional thermal and chemical responses of TRP cation channels in human synoviocytes. Mol Pain 5:49

    PubMed Central  PubMed  Google Scholar 

  • Kong W, McConalogue K, Khitin LM, Hollenberg MD, Payan DG, Bohm SK, Bunnett NW (1997) Luminal trypsin may regulate enterocytes through proteinase-activated receptor 2. Proc Natl Acad Sci U S A 94:8884–8889

    PubMed Central  CAS  PubMed  Google Scholar 

  • Krakow D, Vriens J, Camacho N, Luong P, Deixler H, Funari TL, Bacino CA, Irons MB, Holm IA, Sadler L, Okenfuss EB, Janssens A, Voets T, Rimoin DL, Lachman RS, Nilius B, Cohn DH (2009) Mutations in the gene encoding the calcium-permeable ion channel TRPV4 produce spondylometaphyseal dysplasia, Kozlowski type and metatropic dysplasia. Am J Hum Genet 84:307–315

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kummer JA, Tak PP, Brinkman BM, van Tilborg AA, Kamp AM, Verweij CL, Daha MR, Meinders AE, Hack CE, Breedveld FC (1994) Expression of granzymes A and B in synovial tissue from patients with rheumatoid arthritis and osteoarthritis. Clin Immunol Immunopathol 73:88–95

    CAS  PubMed  Google Scholar 

  • Lamande SR, Yuan Y, Gresshoff IL, Rowley L, Belluoccio D, Kaluarachchi K, Little CB, Botzenhart E, Zerres K, Amor DJ, Cole WG, Savarirayan R, McIntyre P, Bateman JF (2011) Mutations in TRPV4 cause an inherited arthropathy of hands and feet. Nat Genet 43:1142–1146

    CAS  PubMed  Google Scholar 

  • Lambert C, Dubuc JE, Montell E, Verges J, Munaut C, Noel A, Henrotin Y (2014) Gene expression pattern of cells from inflamed and normal areas of osteoarthritis synovial membrane. Arthritis Rheum 66:960–968

    CAS  Google Scholar 

  • Leddy HA, McNulty AL, Guilak F, Liedtke W (2014a) Unraveling the mechanism of by which TRPV4 mutations cause skeletal dysplasias. Rare Dis 2:e962971

    Google Scholar 

  • Leddy HA, McNulty AL, Lee SH, Rothfusz NE, Gloss B, Kirby ML, Hutson MR, Cohn DH, Guilak F, Liedtke W (2014b) Follistatin in chondrocytes: the link between TRPV4 channelopathies and skeletal malformations. FASEB J 28:2525–2537

    CAS  PubMed  Google Scholar 

  • Lee W, Leddy HA, Chen Y, Lee SH, Zelenski NA, McNulty AL, Wu J, Beicker KN, Coles J, Zauscher S, Grandl J, Sachs F, Guilak F, Liedtke WB (2014) Synergy between Piezo1 and Piezo2 channels confers high-strain mechanosensitivity to articular cartilage. Proc Natl Acad Sci U S A 111:E5114–5122

    PubMed Central  CAS  PubMed  Google Scholar 

  • Lieben L, Carmeliet G (2012) The involvement of TRP channels in bone homeostasis. Front Endocrinol 3:99

    Google Scholar 

  • Liedtke W, Friedman JM (2003) Abnormal osmotic regulation in trpv4−/− mice. Proc Natl Acad Sci U S A 100:13698–13703

    PubMed Central  CAS  PubMed  Google Scholar 

  • Liedtke W, Kim C (2005) Functionality of the TRPV subfamily of TRP ion channels: add mechano-TRP and osmo-TRP to the lexicon! Cell Mol Life Sci 62:2985–3001

    CAS  PubMed  Google Scholar 

  • Liedtke W, Choe Y, Marti-Renom MA, Bell AM, Denis CS, Sali A, Hudspeth AJ, Friedman JM, Heller S (2000) Vanilloid receptor-related osmotically activated channel (VR-OAC), a candidate vertebrate osmoreceptor. Cell 103:525–535

    PubMed Central  CAS  PubMed  Google Scholar 

  • Liedtke W, Tobin DM, Bargmann CI, Friedman JM (2003) Mammalian TRPV4 (VR-OAC) directs behavioral responses to osmotic and mechanical stimuli in Caenorhabditis elegans. Proc Natl Acad Sci U S A 100(Suppl 2):14531–14536

    PubMed Central  CAS  PubMed  Google Scholar 

  • Loeser RF, Goldring SR, Scanzello CR, Goldring MB (2012) Osteoarthritis: a disease of the joint as an organ. Arthritis Rheum 64:1697–1707

    PubMed Central  PubMed  Google Scholar 

  • Masuyama R, Vriens J, Voets T, Karashima Y, Owsianik G, Vennekens R, Lieben L, Torrekens S, Moermans K, Vanden Bosch A, Bouillon R, Nilius B, Carmeliet G (2008) TRPV4-mediated calcium influx regulates terminal differentiation of osteoclasts. Cell Metab 8:257–265

    CAS  PubMed  Google Scholar 

  • Masuyama R, Mizuno A, Komori H, Kajiya H, Uekawa A, Kitaura H, Okabe K, Ohyama K, Komori T (2012) Calcium/calmodulin-signaling supports TRPV4 activation in osteoclasts and regulates bone mass. J Bone Miner Res 27:1708–1721

    CAS  PubMed  Google Scholar 

  • McCarty WJ, Masuda K, Sah RL (2011) Fluid movement and joint capsule strains due to flexion in rabbit knees. J Biomech 44:2761–2767

    PubMed Central  PubMed  Google Scholar 

  • McEntagart M (2012) TRPV4 axonal neuropathy spectrum disorder. J Clin Neurosci 19:927–933

    PubMed  Google Scholar 

  • Michael ES, Kuliopulos A, Covic L, Steer ML, Perides G (2013) Pharmacological inhibition of PAR2 with the pepducin P2pal-18S protects mice against acute experimental biliary pancreatitis. Am J Physiol Gastrointest Liver Physiol 304:G516–526

    PubMed Central  CAS  PubMed  Google Scholar 

  • Mizoguchi F, Mizuno A, Hayata T, Nakashima K, Heller S, Ushida T, Sokabe M, Miyasaka N, Suzuki M, Ezura Y, Noda M (2008) Transient receptor potential vanilloid 4 deficiency suppresses unloading-induced bone loss. J Cell Physiol 216:47–53

    CAS  PubMed  Google Scholar 

  • Moffatt JD (2004) Proteinase-activated receptor pharmacology: trickier and trickier. Br J Pharmacol 143:441

    PubMed Central  CAS  PubMed  Google Scholar 

  • Moore C, Cevikbas F, Pasolli HA, Chen Y, Kong W, Kempkes C, Parekh P, Lee SH, Kontchou NA, Yeh I, Jokerst NM, Fuchs E, Steinhoff M, Liedtke WB (2013) UVB radiation generates sunburn pain and affects skin by activating epidermal TRPV4 ion channels and triggering endothelin-1 signaling. Proc Natl Acad Sci U S A 110:E3225–3234

    PubMed Central  CAS  PubMed  Google Scholar 

  • Morris R, Winyard PG, Blake DR, Morris CJ (1994) Thrombin in inflammation and healing: relevance to rheumatoid arthritis. Ann Rheum Dis 53:72–79

    PubMed Central  CAS  PubMed  Google Scholar 

  • Mow VC, Ratcliffe A, Poole AR (1992) Cartilage and diarthrodial joints as paradigms for hierarchical materials and structures. Biomaterials 13:67–97

    CAS  PubMed  Google Scholar 

  • Mow VC, Bachrach NM, Setton LA, Guilak F (1994) Stress, strain, pressure and flow fields in articular cartilage and chondrocytes. In: Mow VC, Tran-Son-Tay R, Guilak F, Hochmuth RM (eds) Cell mechanics and cellular engineering. Springer, New York, pp 345–379

    Google Scholar 

  • Muramatsu S, Wakabayashi M, Ohno T, Amano K, Ooishi R, Sugahara T, Shiojiri S, Tashiro K, Suzuki Y, Nishimura R, Kuhara S, Sugano S, Yoneda T, Matsuda A (2007) Functional gene screening system identified TRPV4 as a regulator of chondrogenic differentiation. J Biol Chem 282:32158–32167

    CAS  PubMed  Google Scholar 

  • Nakagawa TY, Brissette WH, Lira PD, Griffiths RJ, Petrushova N, Stock J, McNeish JD, Eastman SE, Howard ED, Clarke SR, Rosloniec EF, Elliott EA, Rudensky AY (1999) Impaired invariant chain degradation and antigen presentation and diminished collagen-induced arthritis in cathepsin S null mice. Immunity 10:207–217

    CAS  PubMed  Google Scholar 

  • Nilius B, Voets T (2004) Diversity of TRP channel activation. Novartis Found Symp 258:140–149, discussion 149–159, 263–146

    CAS  PubMed  Google Scholar 

  • Nilius B, Voets T (2013) The puzzle of TRPV4 channelopathies. EMBO Rep 14:152–163

    PubMed Central  CAS  PubMed  Google Scholar 

  • Nishimura G, Lausch E, Savarirayan R, Shiba M, Spranger J, Zabel B, Ikegawa S, Superti-Furga A, Unger S (2012) TRPV4-associated skeletal dysplasias. Am J Med Genet C Semin Med Genet 160C:190–204

    PubMed  Google Scholar 

  • Noss EH, Chang SK, Watts GF, Brenner MB (2011) Modulation of matrix metalloproteinase production by rheumatoid arthritis synovial fibroblasts after cadherin 11 engagement. Arthritis Rheum 63:3768–3778

    CAS  PubMed  Google Scholar 

  • O’Conor CJ, Griffin TM, Liedtke W, Guilak F (2013) Increased susceptibility of Trpv4-deficient mice to obesity and obesity-induced osteoarthritis with very high-fat diet. Ann Rheum Dis 72:300–304

    PubMed Central  PubMed  Google Scholar 

  • O’Conor CJ, Leddy HA, Benefield HC, Liedtke WB, Guilak F (2014) TRPV4-mediated mechanotransduction regulates the metabolic response of chondrocytes to dynamic loading. Proc Natl Acad Sci U S A 111:1316–1321

    PubMed Central  PubMed  Google Scholar 

  • Okada Y, Takeuchi N, Tomita K, Nakanishi I, Nagase H (1989) Immunolocalization of matrix metalloproteinase 3 (stromelysin) in rheumatoid synovioblasts (B cells): correlation with rheumatoid arthritis. Ann Rheum Dis 48:645–653

    PubMed Central  CAS  PubMed  Google Scholar 

  • Okuhara DY, Hsia AY, Xie M (2007) Transient receptor potential channels as drug targets. Expert Opin Ther Targets 11:391–401

    PubMed  Google Scholar 

  • Opdenakker G, Masure S, Grillet B, Van Damme J (1991) Cytokine-mediated regulation of human leukocyte gelatinases and role in arthritis. Lymphokine Cytokine Res 10:317–324

    CAS  PubMed  Google Scholar 

  • Phan MN, Leddy HA, Votta BJ, Kumar S, Levy DS, Lipshutz DB, Lee SH, Liedtke W, Guilak F (2009) Functional characterization of TRPV4 as an osmotically sensitive ion channel in porcine articular chondrocytes. Arthritis Rheum 60:3028–3037

    PubMed Central  CAS  PubMed  Google Scholar 

  • Poole AR, Nelson F, Dahlberg L, Tchetina E, Kobayashi M, Yasuda T, Laverty S, Squires G, Kojima T, Wu W, Billinghurst RC (2003) Proteolysis of the collagen fibril in osteoarthritis. Biochem Soc Symp: 115–123

  • Poole DP, Amadesi S, Veldhuis NA, Abogadie FC, Lieu T, Darby W, Liedtke W, Lew MJ, McIntyre P, Bunnett NW (2013) Protease-activated receptor 2 (PAR2) protein and transient receptor potential vanilloid 4 (TRPV4) protein coupling is required for sustained inflammatory signaling. J Biol Chem 288:5790–5802

    PubMed Central  CAS  PubMed  Google Scholar 

  • Posthumus MD, Limburg PC, Westra J, van Leeuwen MA, van Rijswijk MH (2003) Serum matrix metalloproteinase 3 levels in comparison to C-reactive protein in periods with and without progression of radiological damage in patients with early rheumatoid arthritis. Clin Exp Rheumatol 21:465–472

    CAS  PubMed  Google Scholar 

  • Pozgan U, Caglic D, Rozman B, Nagase H, Turk V, Turk B (2010) Expression and activity profiling of selected cysteine cathepsins and matrix metalloproteinases in synovial fluids from patients with rheumatoid arthritis and osteoarthritis. Biol Chem 391:571–579

    CAS  PubMed  Google Scholar 

  • Rannou F, Francois M, Corvol MT, Berenbaum F (2006) Cartilage breakdown in rheumatoid arthritis. Joint Bone Spine 73:29–36

    CAS  PubMed  Google Scholar 

  • Rattenholl A, Steinhoff M (2008) Proteinase-activated receptor-2 in the skin: receptor expression, activation and function during health and disease. Drug News Perspect 21:369–381

    CAS  PubMed  Google Scholar 

  • Rock MJ, Prenen J, Funari VA, Funari TL, Merriman B, Nelson SF, Lachman RS, Wilcox WR, Reyno S, Quadrelli R, Vaglio A, Owsianik G, Janssens A, Voets T, Ikegawa S, Nagai T, Rimoin DL, Nilius B, Cohn DH (2008) Gain-of-function mutations in TRPV4 cause autosomal dominant brachyolmia. Nat Genet 40:999–1003

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ronday HK, van der Laan WH, Tak PP, de Roos JA, Bank RA, TeKoppele JM, Froelich CJ, Hack CE, Hogendoorn PC, Breedveld FC, Verheijen JH (2001) Human granzyme B mediates cartilage proteoglycan degradation and is expressed at the invasive front of the synovium in rheumatoid arthritis. Rheumatology (Oxford) 40:55–61

    CAS  Google Scholar 

  • Rosenthal AK, Gohr CM, Mitton-Fitzgerald E, Lutz MK, Dubyak GR, Ryan LM (2013) The progressive ankylosis gene product ANK regulates extracellular ATP levels in primary articular chondrocytes. Arthritis Res Ther 15:R154

    PubMed Central  PubMed  Google Scholar 

  • Russell FA, Schuelert N, Veldhoen VE, Hollenberg MD, McDougall JJ (2012) Activation of PAR(2) receptors sensitizes primary afferents and causes leukocyte rolling and adherence in the rat knee joint. Br J Pharmacol 167:1665–1678

    PubMed Central  CAS  PubMed  Google Scholar 

  • Saitta B, Passarini J, Sareen D, Ornelas L, Sahabian A, Argade S, Krakow D, Cohn DH, Svendsen CN, Rimoin DL (2014) Patient-derived skeletal dysplasia induced pluripotent stem cells display abnormal chondrogenic marker expression and regulation by BMP2 and TGFbeta1. Stem Cells Dev 23:1464–1478

    CAS  PubMed  Google Scholar 

  • Salat K, Moniczewski A, Librowski T (2013) Transient receptor potential channels - emerging novel drug targets for the treatment of pain. Curr Med Chem 20:1409–1436

    CAS  PubMed  Google Scholar 

  • Sampat SR, Dermksian MV, Oungoulian SR, Winchester RJ, Bulinski JC, Ateshian GA, Hung CT (2013) Applied osmotic loading for promoting development of engineered cartilage. J Biomech 46:2674–2681

    PubMed Central  PubMed  Google Scholar 

  • Schaible H (2013) Joint pain: basic mechanisms. In: McMahon S, Koltzenburg M, Tracey I, Turk D (eds) Wall and Melzack’s textbook of pain. Elsevier Churchill Livingstone Publishers, Philadelphia, pp 609–619

    Google Scholar 

  • Sipe WE, Brierley SM, Martin CM, Phillis BD, Cruz FB, Grady EF, Liedtke W, Cohen DM, Vanner S, Blackshaw LA, Bunnett NW (2008) Transient receptor potential vanilloid 4 mediates protease activated receptor 2-induced sensitization of colonic afferent nerves and visceral hyperalgesia. Am J Physiol Gastrointest Liver Physiol 294:G1288–1298

    CAS  PubMed  Google Scholar 

  • Sostegni S, Diakov A, McIntyre P, Bunnett N, Korbmacher C, Haerteis S (2014) Sensitisation of TRPV4 by PAR is independent of intracellular calcium signalling and can be mediated by the biased agonist neutrophil elastase. Pflugers Arch Eur J Physiol. doi:10.1007/s00424-014-1539-6

  • Stanczyk J, Ospelt C, Karouzakis E, Filer A, Raza K, Kolling C, Gay R, Buckley CD, Tak PP, Gay S, Kyburz D (2011) Altered expression of microRNA-203 in rheumatoid arthritis synovial fibroblasts and its role in fibroblast activation. Arthritis Rheum 63:373–381

    PubMed Central  PubMed  Google Scholar 

  • Steinhoff M, Corvera CU, Thoma MS, Kong W, McAlpine BE, Caughey GH, Ansel JC, Bunnett NW (1999) Proteinase-activated receptor-2 in human skin: tissue distribution and activation of keratinocytes by mast cell tryptase. Exp Dermatol 8:282–294

    CAS  PubMed  Google Scholar 

  • Steinhoff M, Vergnolle N, Young SH, Tognetto M, Amadesi S, Ennes HS, Trevisani M, Hollenberg MD, Wallace JL, Caughey GH, Mitchell SE, Williams LM, Geppetti P, Mayer EA, Bunnett NW (2000) Agonists of proteinase-activated receptor 2 induce inflammation by a neurogenic mechanism. Nat Med 6:151–158

    CAS  PubMed  Google Scholar 

  • Strotmann R, Harteneck C, Nunnenmacher K, Schultz G, Plant TD (2000) OTRPC4, a nonselective cation channel that confers sensitivity to extracellular osmolarity. Nat Cell Biol 2:695–702

    CAS  PubMed  Google Scholar 

  • Sun HB, Yokota H (2002) Reduction of cytokine-induced expression and activity of MMP-1 and MMP-13 by mechanical strain in MH7A rheumatoid synovial cells. Matrix Biol 21:263–270

    CAS  PubMed  Google Scholar 

  • Suzuki T, Notomi T, Miyajima D, Mizoguchi F, Hayata T, Nakamoto T, Hanyu R, Kamolratanakul P, Mizuno A, Suzuki M, Ezura Y, Izumi Y, Noda M (2013) Osteoblastic differentiation enhances expression of TRPV4 that is required for calcium oscillation induced by mechanical force. Bone 54:172–178

    CAS  PubMed  Google Scholar 

  • Terada Y, Fujimura M, Nishimura S, Tsubota M, Sekiguchi F, Nishikawa H, Kawabata A (2013) Contribution of TRPA1 as a downstream signal of proteinase-activated receptor-2 to pancreatic pain. J Pharmacol Sci 123:284–287

    CAS  PubMed  Google Scholar 

  • Thorneloe KS, Cheung M, Bao W, Alsaid H, Lenhard S, Jian MY, Costell M, Maniscalco-Hauk K, Krawiec JA, Olzinski A, Gordon E, Lozinskaya I, Elefante L, Qin P, Matasic DS, James C, Tunstead J, Donovan B, Kallal L, Waszkiewicz A, Vaidya K, Davenport EA, Larkin J, Burgert M, Casillas LN, Marquis RW, Ye G, Eidam HS, Goodman KB, Toomey JR, Roethke TJ, Jucker BM, Schnackenberg CG, Townsley MI, Lepore JJ, Willette RN (2012) An orally active TRPV4 channel blocker prevents and resolves pulmonary edema induced by heart failure. Sci Transl Med 4:159ra–148

    Google Scholar 

  • Tian W, Fu Y, Garcia-Elias A, Fernandez-Fernandez JM, Vicente R, Kramer PL, Klein RF, Hitzemann R, Orwoll ES, Wilmot B, McWeeney S, Valverde MA, Cohen DM (2009) A loss-of-function nonsynonymous polymorphism in the osmoregulatory TRPV4 gene is associated with human hyponatremia. Proc Natl Acad Sci U S A 106:14034–14039

    PubMed Central  CAS  PubMed  Google Scholar 

  • Tindell AG, Kelso EB, Ferrell WR, Lockhart JC, Walsh DA, Dunning L, McInnes IB (2012) Correlation of protease-activated receptor-2 expression and synovitis in rheumatoid and osteoarthritis. Rheumatol Int 32:3077–3086

    CAS  PubMed  Google Scholar 

  • Troeberg L, Nagase H (2012) Proteases involved in cartilage matrix degradation in osteoarthritis. Biochim Biophys Acta 1824:133–145

    PubMed Central  CAS  PubMed  Google Scholar 

  • Turkenburg JP, Lamers MB, Brzozowski AM, Wright LM, Hubbard RE, Sturt SL, Williams DH (2002) Structure of a Cys25–>Ser mutant of human cathepsin S. Acta Crystallogr D Biol Crystallogr 58:451–455

    PubMed  Google Scholar 

  • van der Eerden BC, Oei L, Roschger P, Fratzl-Zelman N, Hoenderop JG, van Schoor NM, Pettersson-Kymmer U, Schreuders-Koedam M, Uitterlinden AG, Hofman A, Suzuki M, Klaushofer K, Ohlsson C, Lips PJ, Rivadeneira F, Bindels RJ, van Leeuwen JP (2013) TRPV4 deficiency causes sexual dimorphism in bone metabolism and osteoporotic fracture risk. Bone 57:443–454

    PubMed  Google Scholar 

  • Vergnolle N, Bunnett NW, Sharkey KA, Brussee V, Compton SJ, Grady EF, Cirino G, Gerard N, Basbaum AI, Andrade-Gordon P, Hollenberg MD, Wallace JL (2001) Proteinase-activated receptor-2 and hyperalgesia: a novel pain pathway. Nat Med 7:821–826

    CAS  PubMed  Google Scholar 

  • Vincent TL (2013) Targeting mechanotransduction pathways in osteoarthritis: a focus on the pericellular matrix. Curr Opin Pharmacol 13:449–454

    CAS  PubMed  Google Scholar 

  • Vincent F, Duncton MA (2011) TRPV4 agonists and antagonists. Curr Top Med Chem 11:2216–2226

    CAS  PubMed  Google Scholar 

  • Wang L, Wang Y, Han Y, Henderson SC, Majeska RJ, Weinbaum S, Schaffler MB (2005) In situ measurement of solute transport in the bone lacunar-canalicular system. Proc Natl Acad Sci U S A 102:11911–11916

    PubMed Central  CAS  PubMed  Google Scholar 

  • Weidauer E, Yasuda Y, Biswal BK, Cherny M, James MN, Bromme D (2007) Effects of disease-modifying anti-rheumatic drugs (DMARDs) on the activities of rheumatoid arthritis-associated cathepsins K and S. Biol Chem 388:331–336

    CAS  PubMed  Google Scholar 

  • Weinstein MM, Tompson SW, Chen Y, Lee B, Cohn DH (2014) Mice expressing mutant Trpv4 recapitulate the human TRPV4 disorders. J Bone Miner Res. doi:10.1002/jbmr.2220

    Google Scholar 

  • Willard VP, Diekman BO, Sanchez-Adams J, Christoforou N, Leong KW, Guilak F (2014) Use of cartilage derived from murine induced pluripotent stem cells for osteoarthritis drug screening. Arthritis Rheumatol 66:3062–3072

    CAS  PubMed  Google Scholar 

  • Zhao P, Lieu T, Barlow N, Metcalf M, Veldhuis N, Jensen D, Kocan M, Sostegni S, Haerteis S, Baraznenok V, Henderson I, Lindstrom E, Guerrero-Alba R, Valdez-Morales E, Liedtke W, McIntyre P, Vanner SJ, Korbmacher C, Bunnett NW (2014) Cathepsin S causes inflammatory pain via biased agonism of PAR2 and TRPV4. J Biol Chem 289(39):27215–34. doi:10.1074/jbc.M114.599712

Download references

Acknowledgments

This study is supported in part by the Arthritis Foundation and NIH grants AR48182, AR48852, AG15768, AR50245, AG46927, AG40868, DE018549, DE018549S1, DE024668, and AG047621.

Conflict of interest

Drs. McNulty, Leddy, and Liedtke declare that they have no conflicts of interest. Dr. Guilak is a founder and employee of Cytex Therapeutics, Inc.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wolfgang Liedtke or Farshid Guilak.

Additional information

This article is published as part of the Special Issue on “TRP Channels as Drug Discovery Targets.”

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

McNulty, A.L., Leddy, H.A., Liedtke, W. et al. TRPV4 as a therapeutic target for joint diseases. Naunyn-Schmiedeberg's Arch Pharmacol 388, 437–450 (2015). https://doi.org/10.1007/s00210-014-1078-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00210-014-1078-x

Keywords

Navigation