Skip to main content
Log in

Dual functions of NME1 in suppression of cell motility and enhancement of genomic stability in melanoma

  • Original Article
  • Published:
Naunyn-Schmiedeberg's Archives of Pharmacology Aims and scope Submit manuscript

Abstract

The NME1 gene represents the prototypical metastasis suppressor, whose expression inhibits cell motility and metastasis without impact on primary tumor growth in a number of different human cancers. This report outlines our recent efforts to define the molecular mechanisms through which NME1 both suppresses cell motility and promotes genomic integrity in the setting of human melanoma. Forced NME1 expression in a variety of melanoma-derived cell lines was shown to induce dynamic changes in cell morphology and reorganization of the actin cytoskeleton, with formation of a network of thick stress fibers and assembly of fibronectin fibrils at large focal adhesions. Moreover, NME1 expression results in adhesion reprogramming through an impact on integrin repertoire and focal adhesion dynamics. Having previously demonstrated that NME1 expression promotes repair of DNA damage induced by ultraviolet radiation (UVR) in both yeast and mammalian cells, probably via the nucleotide excision repair pathway, we have more recently demonstrated that NME1 is rapidly recruited to double-strand breaks. This preliminary result represents the first evidence of direct interactions between NME1 and DNA in the context of DNA repair and has set the stage for current efforts to probe its functional interactions with double-strand break repair pathways. Discussed herein are molecular models to explain the interactions of NME1 with such diverse cellular functions as cell motility and DNA repair, potentially through its nucleoside diphosphate kinase and 3′-5′ exonuclease activities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Agarwal RP, Robinson B, Parks RE (1978) Nucleoside diphosphokinase from erythrocytes. Methods Enzymol 51:376–386

    Article  CAS  PubMed  Google Scholar 

  • Barkan D, Chambers AF (2011) beta1-integrin: a potential therapeutic target in the battle against cancer recurrence. Clin Cancer Res 17:7219–7223

    Article  CAS  PubMed  Google Scholar 

  • Barkan D, Green JE, Chambers AF (2010) Extracellular matrix: a gatekeeper in the transition from dormancy to metastatic growth. Eur J Cancer 46:1181–1188

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Berkovich E, Monnat RJ Jr, Kastan MB (2007) Roles of ATM and NBS1 in chromatin structure modulation and DNA double-strand break repair. Nat Cell Biol 9:683–690

    Article  CAS  PubMed  Google Scholar 

  • Cervoni L, Pietrangeli P, Chichiarelli S, Altieri F, Egistelli L, Turano C, Lascu I, Giartosio A (2003) In vivo cross-linking of nm23/nucleoside diphosphate kinase to the PDGF-A gene promoter. Mol Biol Rep 30:33–40

    Article  CAS  PubMed  Google Scholar 

  • Cervoni L, Egistelli L, Eufemi M, d'Abusco AS, Altieri F, Lascu I, Turano C, Giartosio A (2006) DNA sequences acting as binding sites for NM23/NDPK proteins in melanoma M14 cells. J Cell Biochem 98:421–428

    Article  CAS  PubMed  Google Scholar 

  • Crawford RM, Treharne KJ, Arnaud-Dabernat S, Daniel JY, Foretz M, Viollet B, Mehta A (2006) Understanding the molecular basis of the interaction between NDPK-A and AMPK alpha 1. Mol Cell Biol 26:5921–5931

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Danen EH, Ten Berge PJ, van Muijen GN, Hof-Grootenboer AE V’t, Brocker EB, Ruiter DJ (1994) Emergence of alpha 5 beta 1 fibronectin- and alpha v beta 3 vitronectin-receptor expression in melanocytic tumour progression. Histopathology 24:249–256

    Article  CAS  PubMed  Google Scholar 

  • D'Souza-Schorey C, Chavrier P (2006) ARF proteins: roles in membrane traffic and beyond. Nat Rev Mol Cell Biol 7:347–358

    Article  PubMed  Google Scholar 

  • Egistelli L, Chichiarelli S, Gaucci E, Eufemi M, Schinina ME, Giorgi A, Lascu I, Turano C, Giartosio A, Cervoni L (2009) IFI16 and NM23 bind to a common DNA fragment both in the P53 and the cMYC gene promoters. J Cell Biochem 106:666–672

    Article  CAS  PubMed  Google Scholar 

  • Grzesiak JJ, Tran Cao HS, Burton DW, Kaushal S, Vargas F, Clopton P, Snyder CS, Deftos LJ, Hoffman RM, Bouvet M (2011) Knockdown of the beta(1) integrin subunit reduces primary tumor growth and inhibits pancreatic cancer metastasis. Int J Cancer 129:2905–2915

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hartsough MT, Steeg PS (2000) Nm23/nucleoside diphosphate kinase in human cancers. J Bioenerg Biomembr 32:301–308

    Article  CAS  PubMed  Google Scholar 

  • Horak CE, Lee JH, Elkahloun AG, Boissan M, Dumont S, Maga TK, Arnaud-Dabernat S, Palmieri D, Stetler-Stevenson WG, Lacombe ML, Meltzer PS, Steeg PS (2007) Nm23-H1 suppresses tumor cell motility by down-regulating the lysophosphatidic acid receptor EDG2. Cancer Res 67:7238–7246

    Article  CAS  PubMed  Google Scholar 

  • Huck L, Pontier SM, Zuo DM, Muller WJ (2010) beta1-integrin is dispensable for the induction of ErbB2 mammary tumors but plays a critical role in the metastatic phase of tumor progression. Proc Natl Acad Sci U S A 107:15559–15564

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jarrett SG, Novak M, Dabernat S, Daniel JY, Mellon I, Zhang Q, Harris N, Ciesielski MJ, Fenstermaker RA, Kovacic D, Slominski A, Kaetzel DM (2011) Metastasis suppressor NM23-H1 promotes repair of UV-induced DNA damage and suppresses UV-induced melanomagenesis. Cancer Res in press

  • Jarrett SG, Novak M, Harris N, Merlino G, Slominski A, Kaetzel DM (2013) NM23 deficiency promotes metastasis in a UV radiation-induced mouse model of human melanoma. Clin Exp Metastasis 30:25–36

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lazaro-Dieguez F, Colonna C, Cortegano M, Calvo M, Martinez SE, Egea G (2007) Variable actin dynamics requirement for the exit of different cargo from the trans-Golgi network. FEBS Lett 581:3875–3881

    Article  CAS  PubMed  Google Scholar 

  • Leone A, Flatow U, King CR, Sandeen MA, Margulies IM, Liotta LA, Steeg PS (1991) Reduced tumor incidence, metastatic potential, and cytokine responsiveness of nm23-transfected melanoma cells. Cell JID - 0413066 65:25–35

  • Ma D, McCorkle JR, Kaetzel DM (2004) The metastasis suppressor NM23-H1 possesses 3′-5′ exonuclease activity. J Biol Chem 279:18073–18084

    Article  CAS  PubMed  Google Scholar 

  • Ma D, Nutt CL, Shanehsaz P, Peng X, Louis DN, Kaetzel DM (2005) Autocrine PDGF-dependent gene expression in glioblastoma cells is mediated largely by activation of the transcription factor SRE-BP, and is associated with altered genotype and patient survival in human brain tumors. Cancer Res 65:5523–5534

    Article  CAS  PubMed  Google Scholar 

  • Marino N, Marshall JC, Steeg PS (2011) Protein-protein interactions: a mechanism regulating the anti-metastatic properties of Nm23-H1. Naunyn Schmiedebergs Arch Pharmacol 384:351–362

    Article  CAS  PubMed  Google Scholar 

  • Morgan MR, Hamidi H, Bass MD, Warwood S, Ballestrem C, Humphries MJ (2013) Syndecan-4 phosphorylation is a control point for integrin recycling. Dev Cell 24:472–485

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nikkola J, Vihinen P, Vlaykova T, Hahka-Kemppinen M, Heino J, Pyrhonen S (2004) Integrin chains beta1 and alphav as prognostic factors in human metastatic melanoma. Melanoma Res 14:29–37

    Article  CAS  PubMed  Google Scholar 

  • O'Connor KL, Chen M, Towers LN (2012) Integrin alpha6beta4 cooperates with LPA signaling to stimulate Rac through AKAP-Lbc-mediated RhoA activation. Am J Physiol Cell Physiol 302:C605–C614

    Article  PubMed Central  PubMed  Google Scholar 

  • Oshita F, Kameda Y, Hamanaka N, Saito H, Yamada K, Noda K, Mitsuda A (2004) High expression of integrin beta1 and p53 is a greater poor prognostic factor than clinical stage in small-cell lung cancer. Am J Clin Oncol 27:215–219

    Article  CAS  PubMed  Google Scholar 

  • Postel EH, Berberich SJ, Flint SJ, Ferrone CA (1993) Human c-myc transcription factor PuF identified as nm23-H2 nucleoside diphosphate kinase, a candidate suppressor of tumor metastasis. Science 261:478–480

    Article  CAS  PubMed  Google Scholar 

  • Purdue MP, Freeman LE, Anderson WF, Tucker MA (2008) Recent trends in incidence of cutaneous melanoma among US Caucasian young adults. J Investig Dermatol 128:2905–2908

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Salerno M, Ouatas T, Palmieri D, Steeg PS (2003) Inhibition of signal transduction by the nm23 metastasis suppressor: possible mechanisms. Clin Exp Metastasis 20:3–10

    Article  CAS  PubMed  Google Scholar 

  • Shevelev IV, Hübscher U (2002) The 3′-5′ exonucleases. Nat Rev Mol Cell Biol 3:1–12

    Article  Google Scholar 

  • Shibue T, Weinberg RA (2009) Integrin beta1-focal adhesion kinase signaling directs the proliferation of metastatic cancer cells disseminated in the lungs. Proc Natl Acad Sci U S A 106:10290–10295

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Veluthakal R, Kaetzel D, Kowluru A (2013) Nm23-H1 regulates glucose-stimulated insulin secretion in pancreatic beta-cells via Arf6-Rac1 signaling axis. Cell Physiol Biochem 32:533–541

    Article  CAS  PubMed  Google Scholar 

  • Volk T, Geiger B, Raz A (1984) Motility and adhesive properties of high- and low-metastatic murine neoplastic cells. Cancer Res 44:811–824

    CAS  PubMed  Google Scholar 

  • Wagner PD, Steeg PS, Vu ND (1997) Two-component kinase-like activity of nm23 correlates with its motility-suppressing activity. Proc Natl Acad Sci U S A 94:9000–9005

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Winnepenninckx V, Lazar V, Michiels S, Dessen P, Stas M, Alonso SR, Avril MF, Ortiz Romero PL, Robert T, Balacescu O, Eggermont AM, Lenoir G, Sarasin A, Tursz T, van den Oord JJ, Spatz A (2006) Gene expression profiling of primary cutaneous melanoma and clinical outcome. J Natl Cancer Inst 98:472–482

    Article  CAS  PubMed  Google Scholar 

  • Yang M, Jarrett SG, Craven R, Kaetzel DM (2009) YNK1, the yeast homolog of human metastasis suppressor NM23, is required for repair of UV radiation- and etoposide-induced DNA damage. Mutat Res 660:74–78

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yao ES, Zhang H, Chen YY, Lee B, Chew K, Moore D, Park C (2007) Increased beta1 integrin is associated with decreased survival in invasive breast cancer. Cancer Res 67:659–664

    Article  CAS  PubMed  Google Scholar 

  • Zhang Q, McCorkle JR, Novak M, Yang M, Kaetzel DM (2011) Metastasis suppressor function of NM23-H1 requires its 3′;-5′ exonuclease activity. Int J Cancer 128:40–50

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the United States National Institutes of Health, National Cancer Institute grants CA83237 and CA159871 (D.M. Kaetzel), and training grant T32CA15474 (M.K. Leonard).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David M. Kaetzel.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaetzel, D.M., Leonard, M.K., Cook, G.S. et al. Dual functions of NME1 in suppression of cell motility and enhancement of genomic stability in melanoma. Naunyn-Schmiedeberg's Arch Pharmacol 388, 199–206 (2015). https://doi.org/10.1007/s00210-014-1010-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00210-014-1010-4

Keywords

Navigation