Skip to main content
Log in

A construction of antisymmetric modular forms for Weil representations

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

We give coefficient formulas for antisymmetric vector-valued cusp forms with rational Fourier coefficients for the Weil representation associated to a finite quadratic module. The forms we construct always span all cusp forms in weight at least three. These formulas are useful for computing explicitly with theta lifts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Borcherds, R.: Automorphic forms with singularities on Grassmannians. Invent. Math. 132(3), 491–562 (1998). https://doi.org/10.1007/s002220050232. (ISSN 0020-9910)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bruinier, J., Bundschuh, M.: On Borcherds products associated with lattices of prime discriminant. Ramanujan J. 7(1–3), 49–61 (2003). https://doi.org/10.1023/A:1026222507219. (ISSN 1382-4090. Rankin memorial issues)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bruinier, J., Kuss, M.: Eisenstein series attached to lattices and modular forms on orthogonal groups. Manuscr. Math. 106(4), 443–459 (2001). https://doi.org/10.1007/s229-001-8027-1. (ISSN 0025-2611)

    Article  MathSciNet  MATH  Google Scholar 

  4. Cohen, H., Strömberg, F.: Modular Forms (a classical approach), volume 179 of Graduate Studies in Mathematics. American Mathematical Society, Providence (2017). (ISBN 978-0-8218-4947-7)

    Google Scholar 

  5. Dittmann, M., Hagemeier, H., Schwagenscheidt, M.: Automorphic products of singular weight for simple lattices. Mathematische Zeitschrift 279(1), 585–603 (2015). https://doi.org/10.1007/s00209-014-1383-6. (ISSN 1432-1823)

    Article  MathSciNet  MATH  Google Scholar 

  6. Eichler, M., Zagier, D.: The theory of Jacobi forms, volume 55 of Progress in Mathematics. Birkhäuser Inc., Boston (1985). https://doi.org/10.1007/978-1-4684-9162-3. (ISBN 0-8176-3180-1)

    Book  MATH  Google Scholar 

  7. Gundlach, K.-B.: Die Bestimmung der Funktionen zur Hilbertschen Modulgruppe des Zahlkörpers \(\mathbb{Q} (\sqrt{5})\). Math. Ann. 152, 226–256 (1963). https://doi.org/10.1007/BF01470882. (ISSN 0025-5831)

    Article  MathSciNet  MATH  Google Scholar 

  8. McGraw, W.: The rationality of vector valued modular forms associated with the Weil representation. Math. Ann. 326(1), 105–122 (2003). https://doi.org/10.1007/s00208-003-0413-1. (ISSN 0025-5831)

    Article  MathSciNet  MATH  Google Scholar 

  9. Milnor, J., Husemoller, D.: Symmetric bilinear forms. Springer, New York (1973). (Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 73)

    Book  Google Scholar 

  10. Oda, T.: On modular forms associated with indefinite quadratic forms of signature \((2, n-2)\). Math. Ann., 231(2):97–144 (1977/78). https://doi.org/10.1007/BF01361138 (ISSN 0025-5831)

  11. Raum, M.: Computing genus 1 Jacobi forms. Math. Comput. 85(298), 931–960 (2016). https://doi.org/10.1090/mcom/2992. (ISSN 0025-5718)

    Article  MathSciNet  MATH  Google Scholar 

  12. Schwagenscheidt, M., Williams, B.: Twisted component sums of vector-valued modular forms. Preprint, (2019). https://arxiv.org/abs/1903.07701

  13. Schwagenscheidt, M.: Eisenstein series for the Weil representation. J. Number Theory 193, 74–90 (2018). https://doi.org/10.1016/j.jnt.2018.05.014. (ISSN 0022-314X)

    Article  MathSciNet  MATH  Google Scholar 

  14. Williams, B.: Vector-valued Hirzebruch–Zagier series and class number sums. Res. Math. Sci. 5(2), 13 (2018a). https://doi.org/10.1007/s40687-018-0142-4. (Paper No. 25. ISSN 2522-0144)

    Article  MathSciNet  MATH  Google Scholar 

  15. Williams, B.: Poincaré square series for the Weil representation. Ramanujan J. (2018b). https://doi.org/10.1007/s11139-017-9986-2

    Article  MATH  Google Scholar 

  16. Williams, B.: Remarks on the theta decomposition of vector-valued Jacobi forms. J. Number Theory 197, 250–267 (2019a). https://doi.org/10.1016/j.jnt.2018.08.013. (ISSN 0022-314X)

    Article  MathSciNet  MATH  Google Scholar 

  17. Williams, B.: Poincaré square series of small weight. Ramanujan J. (2019b). https://doi.org/10.1007/s11139-018-0002-2

    Article  MATH  Google Scholar 

  18. Williams, B.: Vector-valued Eisenstein series of small weight. Int. J. Number Theory 15(2), 265–287 (2019c). https://doi.org/10.1142/S1793042119500118. (ISSN 1793-0421)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

I am grateful to Richard Borcherds for supervising the dissertation this note is based on, and for many discussions when I was a graduate student to which I owe my interest in vector-valued modular forms. I also thank Jan Hendrik Bruinier and Martin Raum for helpful discussions, and I thank the reviewer for suggestions which improved the structure of this note. This work was supported by the LOEWE research unit Uniformized Structures in Arithmetic and Geometry.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brandon Williams.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Williams, B. A construction of antisymmetric modular forms for Weil representations. Math. Z. 296, 391–408 (2020). https://doi.org/10.1007/s00209-019-02443-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-019-02443-1

Mathematics Subject Classification

Navigation