Skip to main content

Advertisement

Log in

Durfee-type bound for some non-degenerate complete intersection singularities

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

The Milnor number, \(\mu (X,0)\), and the singularity genus, \(p_g(X,0)\), are fundamental invariants of isolated hypersurface singularities (more generally, of local complete intersections). The long standing Durfee conjecture (and its generalization) predicted the inequality \(\mu (X,0)\ge (n+1)!p_g(X,0)\), here \(n=\dim (X,0)\). Recently we have constructed counterexamples, proposed a corrected bound and verified it for the homogeneous complete intersections. In the current paper we treat the case of germs with Newton-non-degenerate principal part when the Newton diagrams are “large enough”, i.e. they are large multiples of some other diagrams. In the case of local complete intersections we prove the corrected inequality, while in the hypersurface case we prove an even stronger inequality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. National Bureau of Standards Applied Mathematics Series, vol. 55 (1964)

  2. Arnol’d, V.I., Goryunov, V.V., Lyashko, O.V., Vasil’ev, V.A.: Singularity Theory. I. Reprint of the original English edition from the series Encyclopaedia of Mathematical Sciences (Dynamical systems. VI, Encyclopaedia Math. Sci., 6, Springer, Berlin, 1993). Springer, Berlin (1998)

  3. Artin, M.: On isolated rational singularities of surfaces. Am. J. Math. 88, 129–136 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  4. Ashikaga, T.: Normal two-dimensional hypersurface triple points and the Horikawa type resolution. Tohoku Math. J. (2) 44(2), 177–200 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bivià-Ausina, C.: The integral closure of modules, Buchsbaum–Rim multiplicities and Newton polyhedra. J. Lond. Math. Soc. (2) 69(2), 407–427 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bivià-Ausina, C.: Mixed Newton numbers and isolated complete intersection singularities. Proc. Lond. Math. Soc. (3) 94(3), 749–771 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  7. Buchweitz, R.-O., Greuel, G.-M.: The Milnor number and deformations of complex curve singularities. Invent. Math. 58(3), 241–281 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  8. Dimca, A.: Singularities and Topology of Hypersurfaces, Universitext. Springer, New York (1992)

    Book  MATH  Google Scholar 

  9. Damon, J.: Topological invariants of \(\mu \)-constant deformations of complete intersection singularities. Q. J. Math. Oxford Ser. (2) 40(158), 139–159 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  10. Durfee, A.H.: The signature of smoothings of complex surface singularities. Math. Ann. 232(1), 85–98 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  11. Greuel, G.M.: Der Gauss-Manin-Zusammenhang isolierter Singularitäten von vollständigen Durchschnitten. Math. Ann. 214, 235–266 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  12. Greuel, G.M., Hamm, H.A.: Invarianten quasihomogener vollständiger Durchschnitte. Invent. Math. 49(1), 67–86 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  13. Hamm, H.A.: Invariants of weighted homogeneous singularities. Journées Complexes 85, 613 (Nancy, 1985). Inst. Élie Cartan, 10, Univ. Nancy, Nancy (1986)

  14. Hamm, H.A.: Differential forms and Hodge numbers for toric complete intersections. arXiv:1106.1826

  15. Jordan, Ch.: Calculus of Finite Differences. Introduction by Harry C. Carver, 3rd edn. Chelsea Publishing Co., New York (1965)

    MATH  Google Scholar 

  16. Kaveh, K., Khovanskii, A.G.: Convex bodies and multiplicities of ideals. arXiv:1302.2676

  17. Kaveh, K., Khovanskii, A.G.: On mixed multiplicities of ideals. arXiv:1310.7979

  18. Kerner, D., Némethi, A.: A counterexample to Durfee conjecture. Comptes Rendus Mathématiques de l’Académie des Sciences, 34(2) (2012). arXiv:1109.4869

  19. Kerner, D., Némethi, A.: The ’corrected Durfee’s inequality’ for homogeneous complete intersections. Mathematische Zeitschrift, Math. Z. 274(3–4), 1385–1400 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  20. Kerner, D., Némethi, A.: A generalized FKG–inequality for compositions. J. Comb. Theory Ser. A. arXiv:1412.8200

  21. Khovanskii, A.G.: Newton polyhedra, and the genus of complete intersections (Russian). Funktsional. Anal. i Prilozhen. 12(1), 51–61 (1978)

    Article  MathSciNet  Google Scholar 

  22. Kouchnirenko, A.G.: Polyèdres de Newton et nombres de Milnor. Invent. Math. 32(1), 1–31 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  23. Laufer, H.B.: On \(\mu \) for surface singularities. Proc. Symp. Pure Math. 30, 45–49 (1977)

    Article  Google Scholar 

  24. Looijenga, E.: Isolated Singular Points on Complete Intersections. London Math. Soc. LNS 77, CUP, (1984)

  25. Looijenga, E.: Riemann–Roch and smoothings of singularities. Topology 25(3), 293–302 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  26. Martin, B., Pfister, G.: Milnor number of complete intersections and Newton polygons. Math. Nachr. 110, 159–177 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  27. Melle-Hernández, A.: Milnor numbers for surface singularities. Israel J. Math. 115, 29–50 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  28. Merle, M., Teissier, B.: Conditions d’adjonction, d’après DuVal in Séminaire sur les Singularités des Surfaces. In: Lecture Notes in Mathematics, vol. 777, pp. 229–245. Springer, Berlin (1980)

  29. Milnor, J.: Singular Points of Complex Hypersurfaces, Annals of Math. Studies 61. Princeton University Press, Princeton (1968)

    Google Scholar 

  30. Morales, M.: Polyèdre de Newton et genre géométrique d’une singularité intersection complète. Bull. Soc. Math. France 112(3), 325–341 (1984)

    MathSciNet  MATH  Google Scholar 

  31. Morales, M.: Fonctions de Hilbert, genre géométrique d’une singularité quasi-homogène Cohen-Macaulay. C. R. Acad. Sci. Paris Sér. I Math 301(14), 699–702 (1985)

    MATH  Google Scholar 

  32. Némethi, A.: Dedekind sums and the signature of \(f(x,y)+z^N\). Selecta. Math. (N.S.) 4(2), 361–376 (1998)

  33. Némethi, A.: Dedekind sums and the signature of \(f(x,y)+z^N\). II. Selecta. Math. (N.S.) 5, 161–179 (1999)

  34. Oka, M.: Principal zeta-function of nondegenerate complete intersection singularity. J. Fac. Sci. Univ. Tokyo Sect. IA Math 37(1), 11–32 (1990)

    MathSciNet  MATH  Google Scholar 

  35. Oka, M.: Non-degenerate Complete Intersection Singularity. Actualités Mathématiques (Current Mathematical Topics). Hermann, Paris (1997)

  36. Saito, M.: On the exponents and the geometric genus of an isolated hypersurface singularity. Singularities, Part 2 (Arcata, Calif., 1981), 465–472. In: Proc. Sympos. Pure Math., 40, Am. Math. Soc., Providence (1983)

  37. Seade, J.: On the Topology of Isolated Singularities in Analytic Spaces. Progress in Mathematics 241. Birkhäuser, Boston (2006)

    MATH  Google Scholar 

  38. Teissier, B.: On a Minkowski-type inequality for multiplicities. II. C. P. Ramanujam a tribute, pp. 347–361, Tata Inst. Fund. Res. Studies in Math., 8, Springer, Berlin (1978)

  39. Teissier, B.: Monomial ideals, binomial ideals, polynomial ideals. In: Trends in Commutative Algebra. Math. Sci. Res. Inst. Publ., vol. 51, pp. 211–246. Cambridge Univ. Press, Cambridge (2004)

  40. Tomari, M.: The inequality \(8p_g<\mu \) for hypersurface two-dimensional isolated double points. Math. Nachr. 164, 37–48 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  41. Xu, Y.-J., Yau, S.S.-T.: Durfee conjecture and coordinate free characterization of homogeneous singularities. J. Differ. Geom. 37(2), 375–396 (1993)

    MathSciNet  MATH  Google Scholar 

  42. Yau, St-T, Zhang, L.: An upper estimate of integral points in real simplices with an application to singularity theory. Math. Res. Lett. 13(5–6), 911–921 (2006)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dmitry Kerner.

Additional information

Dmitry Kerner was supported by the Grant FP7-People-MCA-CIG, 334347. András Némethi was supported by OTKA Grant 100796.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kerner, D., Némethi, A. Durfee-type bound for some non-degenerate complete intersection singularities. Math. Z. 285, 159–175 (2017). https://doi.org/10.1007/s00209-016-1702-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-016-1702-1

Keywords

Navigation