Skip to main content
Log in

Contractive determinantal representations of stable polynomials on a matrix polyball

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

We show that a polynomial p with no zeros on the closure of a matrix unit polyball, a.k.a. a cartesian product of Cartan domains of type I, and such that \(p(0)=1\), admits a strictly contractive determinantal representation, i.e., \(p=\det (I-KZ_n)\), where \(n=(n_1,\ldots ,n_k)\) is a k-tuple of nonnegative integers, \(Z_n=\bigoplus _{r=1}^k(Z^{(r)}\otimes I_{n_r})\), \(Z^{(r)}=[z^{(r)}_{ij}]\) are complex matrices, p is a polynomial in the matrix entries \(z^{(r)}_{ij}\), and K is a strictly contractive matrix. This result is obtained via a noncommutative lifting and a theorem on the singularities of minimal noncommutative structured system realizations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Here and in the rest of the paper we use a convention that a matrix block which involves \(I_{n_i}\) is void in the case of \(n_i\) equal to 0.

  2. We note that, even without a contractiveness requirement for K, constructing a representation with \(n=\deg p\) is, in general, impossible, because it involves solving an overdetermined system of equations for the entries of K when n is sufficiently large.

  3. Here, similarly to the convention we made in a footnote on the front page of the paper, we assume that a matrix block is void if the number of its rows/columns is 0.

References

  1. Agler, J.: On the representation of certain holomorphic functions defined on a polydisc. In: Topics in Operator Theory: Ernst D. Hellinger Memorial Volume, Oper. Theory Adv. Appl., Vol. 48, pp. 47-66. Birkhäuser, Basel (1990)

  2. Ambrozie, C.-G., Timotin, D.A.: Von Neumann type inequality for certain domains in \({\mathbb{C}}^{n}\). Proc. Am. Math. Soc. 131(3), 859–869 (2003). (electronic)

    Article  MathSciNet  MATH  Google Scholar 

  3. Arov, D.Z.: Passive linear steady-state dynamical systems. Sib. Mat. Zh. 20(2), 211–228 (1979). 457

    Article  MathSciNet  MATH  Google Scholar 

  4. Ball, J.A., Bolotnikov, V.: Realization and interpolation for Schur–Agler-class functions on domains with matrix polynomial defining function in \(\mathbb{C}^n\). J. Funct. Anal. 213(1), 45–87 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  5. Ball, J.A., Groenewald, G., Malakorn, T.: Structured noncommutative multidimensional linear systems. SIAM J. Control Optim. 44(4), 1474–1528 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  6. Ball, J.A., Kaliuzhnyi-Verbovetskyi, D.S.: Rational Cayley inner Herglotz–Agler functions: positive-kernel decompositions and transfer-function realizations. Linear Algebra Appl. 456, 138–156 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  7. Basu, S., Fettweis, A.: New results on stable multidimensional polynomials. II. Discrete case. IEEE Trans. Circuits Syst. 34, 1264–1274 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  8. Borcea, J., Brändén, P., Liggett, T.M.: Negative dependence and the geometry of polynomials. J. Am. Math. Soc. 22(2), 521–567 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  9. Doyle, J.C.: Analysis of feedback systems with structured uncertainties. Proc. IEE-D 129(6), 242–250 (1982)

    Article  MathSciNet  Google Scholar 

  10. Grinshpan, A., Kaliuzhnyi-Verbovetskyi, D.S., Vinnikov, V., Woerdeman, H.J.: Stable and real-zero polynomials in two variables. Multidimens. Syst. Sign. Process. (2014). doi:10.1007/s11045-014-0286-3

    MathSciNet  Google Scholar 

  11. Grinshpan, A., Kaliuzhnyi-Verbovetskyi, D.S., Vinnikov, V., Woerdeman, H.J.: Matrix-valued Hermitian Positivstellensatz, lurking contractions, and contractive determinantal representations of stable polynomials. Oper. Theory: Adv. Appl., to appear. Available online in arXiv:1501.05527

  12. Grinshpan, A., Kaliuzhnyi-Verbovetskyi, D.S., Woerdeman, H.J.: Norm-constrained determinantal representations of multivariable polynomials. Complex Anal. Oper. Theory 7, 635–654 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  13. Gurvits, L.: Van der Waerden/Schrijver-Valiant like conjectures and stable (aka hyperbolic) homogeneous polynomials: one theorem for all. With a corrigendum. Electron. J. Comb. 15(1), Research Paper 66, 26 pp (2008)

  14. Hua, L.K.: Harmonic analysis of functions of several complex variables in the classical domains. Translated from the Russian by Leo Ebner and Adam Korányi, American Mathematical Society, Providence, R.I. (1963), iv+164

  15. Kaliuzhnyi-Verbovetskyi, D.S., Vinnikov, V.: Foundations of Free Non-commutative Function Theory. Math Surveys and Monographs, Vol. 199, 183 pp. AMS (2014)

  16. Kaliuzhnyi-Verbovetskyi, D.S., Vinnikov, V.: Noncommutative rational functions, their difference-differential calculus and realizations. Multidimens. Syst. Signal Process. 23(1–2), 49–77 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  17. Kaliuzhnyi-Verbovetskyi, D.S., Vinnikov, V.: Singularities of rational functions and minimal factorizations: the noncommutative and the commutative setting. Linear Algebra Appl. 430(4), 869–889 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  18. Knese, G.: Rational inner functions in the Schur–Agler class of the polydisk. Publ. Mat. 55, 343–357 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  19. Kummert, A.: 2-D stable polynomials with parameter-dependent coefficients: generalizations and new results. IEEE Trans. Circuits Syst. I: Fund. Theory Appl. 49, 725–731 (2002)

    Article  MathSciNet  Google Scholar 

  20. Kummert, A.: Synthesis of two-dimmensional lossless \(m\)-ports with prescribed scattering matrix. Circuits Syst. Signal Process. 8(1), 97–119 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  21. Kummert, A.: A parametric representation for \(k\)-variable Schur polynomials. IEEE Trans. Circuits Syst. 37(10), 1288–1291 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  22. Li, L., Xu, L., Lin, Z.: Stability and stabilisation of linear multidimensional discrete systems in the frequency domain. Int. J. Control 86(11), 1969–1989 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  23. Rudin, W.: Function Theory in Polydiscs. W. A. Benjamin, Inc., New York (1969)

    MATH  Google Scholar 

  24. Scheicher, M.: Robustly stable multivariate polynomials. Multidimens. Syst. Signal Process. 24(1), 23–50 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  25. Taylor, J.L.: A joint spectrum for several commuting operators. J. Funct. Anal. 6, 172–191 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  26. Taylor, J.L.: The analytic-functional calculus for several commuting operators. Acta Math. 125, 1–38 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  27. Wagner, D.G.: Multivariate stable polynomials: theory and applications. Bull. Am. Math. Soc. 48(1), 53–84 (2011)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dmitry S. Kaliuzhnyi-Verbovetskyi.

Additional information

AG, DK-V, HW were partially supported by NSF Grant DMS-0901628. DK-V and VV were partially supported by BSF Grant 2010432.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grinshpan, A., Kaliuzhnyi-Verbovetskyi, D.S., Vinnikov, V. et al. Contractive determinantal representations of stable polynomials on a matrix polyball. Math. Z. 283, 25–37 (2016). https://doi.org/10.1007/s00209-015-1587-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-015-1587-4

Keywords

Mathematics Subject Classification

Navigation