Skip to main content
Log in

Recipes to Fermat-type equations of the form \(x^r + y^r =Cz^p\)

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

We describe a strategy to attack infinitely many Fermat-type equations of signature \((r,r,p)\), where \(r \ge 7\) is a fixed prime and \(p\) is a prime allowed to vary. Indeed, to a solution \((a,b,c)\) of \(x^r + y^r =Cz^p\) we will attach several Frey curves \(E=E_{(a,b)}\) defined over totally real subfields of \(\mathbb {Q}(\zeta _r)\). We prove modularity of all the Frey curves and the exsitence of a constant constant \(M_r\), depending only on \(r\), such that for all \(p>M_r\) the representations \(\bar{\rho }_{E,p}\) are absolutely irreducible. Along the way, we also prove modularity of certain elliptic curves that are semistable at all \(v \mid 3\). Finally, we illustrate our methods by proving arithmetic statements about equations of signature \((7,7,p)\). Among which we emphasize that, using a multi-Frey technique, we show there is some constant \(M\) such that if \(p > M\) then the equation \(x^7 + y^7 = 3z^p\) has no non-trivial primitive solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Barnet-Lamb, T., Gee, T., Geraghty, D.: Congruences between Hilbert modular forms: constructing ordinary lifts II. Math. Res. Lett. 20(01), 67–72 (2013)

  2. Bennett, M.A., Chen, I.: Multi-Frey \(\mathbb{Q}\)-curves and the Diophantine equation \(a^2+b^6=c^n\). Algebra Number Theory 6(4), 707–730 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  3. Bennett, M.A., Chen, I., Dahmen, S.R., Yazdani, S.: Generalized Fermat equations: a miscelany (preprint). http://www.staff.science.uu.nl/dahme104/BeChDaYa-misc.pdf

  4. Bennett, M.A., Ellenberg, J.S.: The Diophantine equation \(A^4+2^\delta B^2=C^n\). Int. J. Number Theory 6(2), 311–338 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  5. Billerey, N.: Équations de Fermat de type \((5,5, p)\). Bull. Aust. Math. Soc. 76(2), 161–194 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  6. Billerey, N.: Critères d’irréductibilité pour les représentations des courbes elliptiques. Int. J. Number Theory 7(4), 1001–1032 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  7. Billerey, N., Dieulefait, L.V.: Solving Fermat-type equations \(x^5+y^5=dz^p\). Math. Comp. 79(269), 535–544 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  8. Bosma, W., Cannon, J., Playoust C.: The Magma algebra system. I. The user language. J. Symbolic Comput., 24(3–4):235–265, 1997. Computational algebra and number theory (1993)

  9. Breuil, C., Diamond, F.: Formes modulaires de Hilbert modulo \(p\) et valeurs d’extensions galoisiennes. Ann. Scient. de l’E.N.S. http://arxiv.org/abs/1208.5367

  10. Bruin, N.: On powers as sums of two cubes. In: Algorithmic Number Theory, volume 1838 of Lecture Notes in Comput. Sci., pp. 169–184. Springer, Berlin (2000)

  11. Carayol, H.: Sur les représentations galoisiennes modulo \(l\) attachées aux formes modulaires. Duke Math. J. 59(3), 785–801 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  12. Chen, I., Siksek, S.: Perfect powers expressible as sums of two cubes. J. Algebra 322(3), 638–656 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  13. Dahmen, S.R.: Classical and modular methods applied to Diophantine equations. PhD thesis, University of Utrecht, 2008. igitur-archive.library.uu.nl/dissertations/2008-0820-200949/UUindex.html

  14. Darmon, H.: Rigid local systems, Hilbert modular forms, and Fermat’s last theorem. Duke Math. J. 102(3), 413–449 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  15. Darmon, H., Granville, A.: On the equations \(z^m=F(x, y)\) and \(Ax^p+By^q=Cz^r\). Bull. London Math. Soc. 27(6), 513–543 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  16. Darmon, H., Merel, L.: Winding quotients and some variants of Fermat’s last theorem. J. Reine Angew. Math. 490, 81–100 (1997)

    MATH  MathSciNet  Google Scholar 

  17. Dembélé, L.: Quaternionic Manin symbols, Brandt matrices, and Hilbert modular forms. Math. Comp. 76(258), 1039–1057 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  18. Dieulefait, L., Freitas, N.: The Fermat-type equations \(x^5 + y^5 = 2z^p\) or \(3z^p\) solved through \(\mathbb{Q}\)-curves. Math. Comp. http://arxiv.org/abs/1103.5388

  19. Dieulefait, L., Freitas, N.: Fermat-type equations of signature \((13,13, p)\) via Hilbert cuspforms. Math. Ann. 357(3), 987–1004 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  20. Ellenberg, J.S.: Galois representations attached to \(\mathbb{Q}\)-curves and the generalized Fermat equation \(A^4+B^2=C^p\). Am. J. Math. 126(4), 763–787 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  21. Ellenberg, J.S.: Serre’s conjecture over \(\mathbb{F}_9\). Ann. of Math. 161(3), 1111–1142 (2005)

  22. Freitas, N., Siksek, S.: Criteria for irreducibility of mod \(p\) representations of Frey curves (preprint). http://arxiv.org/abs/1309.4748

  23. Jacquet, H., Langlands, R.P.: Automorphic forms on GL(2). Lecture Notes in Mathematics, Vol. 114. Springer, Berlin, 1970.

  24. Jarvis, F.: Correspondences on Shimura curves and Mazur’s principle at \(p\). Pacific J. Math. 213(2), 267–280 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  25. Jarvis, F., Manoharmayum, J.: On the modularity of supersingular elliptic curves over certain totally real number fields. J. Number Theory 128(3), 589–618 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  26. Jarvis, F., Meekin, P.: The Fermat equation over \({\mathbb{Q}}(\sqrt{2})\). J. Number Theory 109(1), 182–196 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  27. Kirschmer, M., Voight, J.: Algorithmic enumeration of ideal classes for quaternion orders. SIAM J. Comput. 39(5), 1714–1747 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  28. Kraus, A.: Sur le défaut de semi-stabilité des courbes elliptiques à réduction additive. Manuscripta Math. 69(4), 353–385 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  29. Kraus, A.: Sur l’équation \(a^3+b^3=c^p\). Exp. Math. 7(1), 1–13 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  30. Kraus, A.: On the equation \(x^p+y^q=z^r\): a survey. Ramanujan J. 3(3), 315–333 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  31. Kraus, A.: Une question sur les équations \(x^m-y^m=Rz^n\). Compos. Math. 132(1), 1–26 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  32. Papadopoulos, I.: Sur la classification de Néron des courbes elliptiques en caractéristique résiduelle \(2\) et \(3\). J. Number Theory 44(2), 119–152 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  33. Poonen, B.: Some Diophantine equations of the form \(x^n+y^n=z^m\). Acta Arith. 86(3), 193–205 (1998)

    MATH  MathSciNet  Google Scholar 

  34. Rajaei, A.: On the levels of mod \(l\) Hilbert modular forms. J. Reine Angew. Math. 537, 33–65 (2001)

    MATH  MathSciNet  Google Scholar 

  35. Skinner, C.M., Wiles, A.J.: Residually reducible representations and modular forms. Inst. Hautes Études Sci. Publ. Math. 89, 5–126 (2000), (1999).

  36. Skinner, C.M., Wiles, A.J.: Nearly ordinary deformations of irreducible residual representations. Ann. Fac. Sci. Toulouse Math. 10(1), 185–215 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  37. Wiles, A.: On ordinary \(\lambda \)-adic representations associated to modular forms. Invent. Math. 94(3), 529–573 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  38. Wiles, A.: Modular elliptic curves and Fermat’s last theorem. Ann. Math. 141(3), 443–551 (1995)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

My greatest thanks go to Luis Dieulefait for our numerous discussions. I also thank Samir Siksek and Panagiotis Tsaknias for their valuable suggestions. I am grateful to John Voight for his computions of Hilbert modular forms that were crucial to this work. I am indebted to Nicolas Billerey, Fred Diamond, Gabor Wiese, Sara Arias-de-Reyna and Xavier Guitart for helpful suggestions and comments. I also thank Gabor Wiese and Fred Diamond for having me as visitor at University of Luxembourg and King’s College London, respectively. Great progress was made on this work during these visits.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nuno Freitas.

Additional information

This work was supported by the scholarship with reference \(SFRH/BD/44283/2008\) from Fundaçao para a Ciência e a Tecnologia, Portugal and also by a grant from Fundació Ferran Sunyer i Balaguer.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Freitas, N. Recipes to Fermat-type equations of the form \(x^r + y^r =Cz^p\) . Math. Z. 279, 605–639 (2015). https://doi.org/10.1007/s00209-014-1384-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-014-1384-5

Keywords

Mathematics Subject Classification

Navigation