Skip to main content
Log in

Rigid objects, triangulated subfactors and abelian localizations

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

We show that the abelian category \(\mathsf{mod}\text{-}\mathcal{X }\) of coherent functors over a contravariantly finite rigid subcategory \(\mathcal{X }\) in a triangulated category \(\mathcal{T }\) is equivalent to the Gabriel–Zisman localization at the class of regular maps of a certain factor category of \(\mathcal{T }\), and moreover it can be calculated by left and right fractions. Thus we generalize recent results of Buan and Marsh. We also extend recent results of Iyama–Yoshino concerning subfactor triangulated categories arising from mutation pairs in \(\mathcal{T }\). In fact we give a classification of thick triangulated subcategories of a natural pretriangulated factor category of \(\mathcal{T }\) and a classification of functorially finite rigid subcategories of \(\mathcal{T }\) if the latter has Serre duality. In addition we characterize \(2\)-cluster tilting subcategories along these lines. Finally we extend basic results of Keller–Reiten concerning the Gorenstein and the Calabi–Yau property for categories arising from certain rigid, not necessarily cluster tilting, subcategories, as well as several results of the literature concerning the connections between \(2\)-cluster tilting subcategories of triangulated categories and tilting subcategories of the associated abelian category of coherent functors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Amiot, C.: On the structure of triangulated categories with finitely many indecomposables. Bull. Soc. Math. France 135(3), 435–474 (2007)

    MathSciNet  MATH  Google Scholar 

  2. Auslander, M., Reiten, I.: Stable equivalence of dualizing \(R\)-varieties. Adv. Math. 12, 306–366 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  3. Auslander, M., Reiten, I., Smalø, S.: Representation theory of Artin algebras. Cambridge Studies in Advanced Mathematics, vol. 36. Cambridge University Press, Cambridge (1995)

  4. Beligiannis, A.: The homological theory of contravariantly finite subcategories: Gorenstein categories, Auslander–Buchweitz contexts and (co-)stabilization. Commun. Algebra 28, 4547–4596 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  5. Beligiannis, A.: On the Freyd categories of an additive category. Homol. Homotopy Appl. 2(11), 147–185 (2000)

    Google Scholar 

  6. Beligiannis, A.: Relative homological algebra and purity in triangulated categories. J. Algebra 227, 268–361 (2000)

    Google Scholar 

  7. Beligiannis, A.: Cohen–Macaulay modules, (co)torsion Pairs and virtually Gorenstein algebras. J. Algebra 288(1), 137–211 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  8. Beligiannis, A.: Relative homology and higher cluster tilting theory (2010, preprint)

  9. Beligiannis, A.: Tilting theory in Abelian categories and related homotopical structures (2010, preprint)

  10. Beligiannis, A., Krause, H.: Realizing maps between modules over Tate cohomology rings. Beiträge zur Algebra und Geometrie (contributions to Algebra and Geometry) 44(2), 451–466 (2003)

  11. Beligiannis, A., Reiten, I.: Homological and homotopical aspects of torsion theories. Mem. Am. Math. Soc. 188, viii+207 pp (2007)

    Google Scholar 

  12. Bongartz, K.: Tilted algebras. In: Lecture Notes in Math., vol 903. Springer, Berlin, pp. 26–38 (1981).

  13. Buan, A., Marsh, R.: From triangulated categories to module categories via localisation. Trans. Am. Math. Soc. (2012) (to appear)

  14. Buan, A., Marsh, R.: From triangulated categories to module categories via localisation II: calculus of fractions. J. Lond. Math. Soc. 86(1), 152–170 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  15. Buan, A., Marsh, R., Reiten, I.: Cluster tilted algebras. Trans. A.M.S. 359, 323–332 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  16. Buan, A., Iyama, O., Reiten, I., Scott, J.: Cluster structures for 2-Calabi–Yau categories and unipotent groups. Compos. Math. 145(4), 1035–1079 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  17. Dyer, M.: Exact subcategories of triangulated categories. http://www.nd.edu/~dyer/papers/index.html, preprint

  18. Erdmann, K., Skowronski, A.: The stable Calabi–Yau dimension of tame symmetric algebras. J. Math. Soc. Jpn. 58, 97–128 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  19. Fu, Ch., Liu, P.: Lifting of cluster-tilting objects in 2-Calabi–Yau triangulated categories. Commun. Algebra 37, 2410–2418 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  20. Gabriel, P., Zisman, M.: Calculus of fractions and homotopy theory. Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 35, x+168 pp. Springer, Berlin (1967)

  21. Happel, D.: Triangulated categories in the representation theory of finite-dimensional algebras. In: London Mathematical Society Lecture Note Series, vol. 119. Cambridge University Press, Cambridge (1988)

  22. Ingalls, C., Thomas, H.: Noncrossing partitions and representations of quivers. Compos. Math. 145(6), 1533–1562 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  23. Iyama, O., Yoshino, Y.: Mutation in triangulated categories and rigid Cohen–Macaulay modules. Invent. Math. 172(1), 117–168 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  24. Jørgensen, P.: Quotients of cluster categories. Proc. R. Soc. Edinb. Sect. A 140(1), 65–81 (2010)

    Article  Google Scholar 

  25. Jørgensen, P., Holm, Th: On the relation between cluster and classical tilting. J. Pure Appl. Algebra 214, 1523–1533 (2010)

    Article  MathSciNet  Google Scholar 

  26. Keller, B., Reiten, I.: Cluster-tilted algebras are Gorenstein and stably Calabi–Yau. Adv. Math. 211, 123–151 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  27. Keller, B., Yang, D., Zhou, G.: The Hall algebra of a spherical object. J. Lond. Math. Soc. (2) 80, 771–784 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  28. Koenig, S., Zhu, B.: From triangulated categories to abelian categories: cluster tilting in a general framework. Math. Z. 258(1), 143–160 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  29. Mantese, F., Reiten, I.: Wakamatsu tilting modules. J. Algebra 278, 532–552 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  30. Neeman, A.: Triangulated categories. Annals of Mathematics Studies, vol. 148, vii+449 pp. Princeton University Press, Princeton (2001)

  31. Reiten, I., Van den Bergh, M.: Noetherian hereditary abelian categories satisfying Serre duality. J. Am. Math. Soc. 15(2), 295–366 (2002)

    Article  MATH  Google Scholar 

  32. Rickard, J.: Equivalences for derived categories for symmetric algebras. J. Algebra 257(2), 460–481 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  33. Rump, W.: Almost abelian categories. Cahiers Topologie Geom. Differentielle Categ. 42(3), 163–225 (2001)

    MathSciNet  MATH  Google Scholar 

  34. Schubert. H.: Categories, xi+385 pp. Springer, New York (1972)

  35. Smith, D.: On tilting modules over cluster tilted algerbas. Ill. J. Math. 52(4), 1223–1247 (2008)

    MATH  Google Scholar 

  36. Wheeler, W.: The triangulated structure of the stable derived category. J. Algebra 165(1), 23–40 (1994)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The author thanks the referee for the useful comments and remarks.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Apostolos Beligiannis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Beligiannis, A. Rigid objects, triangulated subfactors and abelian localizations. Math. Z. 274, 841–883 (2013). https://doi.org/10.1007/s00209-012-1099-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-012-1099-4

Keywords

Mathematics Subject Classification (2010)

Navigation