Skip to main content
Log in

The NSLUC property and Klee envelope

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

A notion called norm subdifferential local uniform convexity (NSLUC) is introduced and studied. It is shown that the property holds for all subsets of a Banach space whenever the norm is either locally uniformly convex or k-fully convex. The property is also valid for all subsets of the Banach space if the norm is Kadec-Klee and its dual norm is Gâteaux differentiable off zero. The NSLUC concept allows us to obtain new properties of the Klee envelope, for example a connection between attainment sets of the Klee envelope of a function and its convex hull. It is also proved that the Klee envelope with unit power plus an appropriate distance function is equal to some constant on an open convex subset as large as we need. As a consequence of obtained results, the subdifferential properties of the Klee envelope can be inherited from subdifferential properties of the opposite of the distance function to the complement of the bounded convex open set. Moreover the problem of singleton property of sets with unique farthest point is reduced to the problem of convexity of Chebyshev sets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Asplund, E.: Farthest points in reflexive locally uniformly rotund Banach spaces. Israel J. Math. 4, 213–216 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  2. Asplund, E.: Sets with unique farthest points. Israel J. Math. 5, 201–209 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bandyopadhyay, P.: The Mazur Intersection property for familes of closed bounded convex sets in Banach spaces. Colloq. Math. 63, 45–56 (1992)

    MathSciNet  Google Scholar 

  4. Bandyopadhyay, P., Dutta, S.: Farthest points and the farthest distance map. Bull. Aust. Math. Soc. 71, 425–433 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bauschke, H.H., Combettes, P.L.: Convex Analysis and Monotone Operator Theory in Hilbert Spaces. CMS Books in Mathematics. Springer, Berlin (2011)

    Book  MATH  Google Scholar 

  6. Bauschke, H.H., Macklem, S., Wang, X.: Chebyshev Sets, Klee Sets, and Chebyshev Centers with Respect to Bregman Distances: Recent Results and Open Problems, 1–21 in Fixed-Point Algorithms for Inverse Problems in Sciences and Engineering. Springer Optimization and Its Applications. Springer, New York (2011)

    MATH  Google Scholar 

  7. Borwein, J., Fitzpatrick, S.: Existence of nearest points in Banach spaces. Can. J. Math. 4, 702–720 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  8. Chen, Dongjian, Lin, Bor-Luh: Ball separation properties in Banach spaces. Rocky Mt. J. Math. 28, 835–873 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  9. Cibulka, R., Fabian, M.: Attainment and (sub) differentiability of the supremal convolution of a function and square of the norm. J. Math. Anal. Appl. 393, 632–643 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  10. Deutsch, F.: Best Approximation in Inner Product Spaces. Springer, Berlin (2001)

    Book  MATH  Google Scholar 

  11. Deville, R., Godefroy, G., Zizler, V.: Smoothness and renormings in Banach spaces. Longman scientific and technical (1993)

  12. Deville, R., Zizler, V.: Farthest points in \(w^*\)-compact sets. Bull. Aust. Math. Soc. 38, 433–439 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  13. Diestel, J.: Geometry of Banach Spaces-Selected Topics. Springer, Berlin (1975)

    MATH  Google Scholar 

  14. Dutta, S.: Generalized subdifferential of the distance function. Proc. Am. Math. Soc. 133, 2949–2955 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  15. Edelstein, M.: Farthest points in uniformly convex Banach spaces. Israel J. Math. 4, 171–176 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  16. Edelstein, M., Lewis, J.: On exposed and farthest points in normed linear spaces. J. Aust. Math. Soc. 12, 301–308 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  17. Fabian, M., Habala, P., Hájek, P., Montesinos, V., Zizler, V.: Banach Space Theory. CMS Books in Mathrmatics. Springer, New York (2011)

    Book  MATH  Google Scholar 

  18. Fan, K., Glicksberg, I.: Fully convex normed linear spaces. Proc. Natl. Acad. Sci. USA 41, 947–953 (1955)

    Article  MathSciNet  MATH  Google Scholar 

  19. Fan, K., Glicksberg, I.: Some geometric properties of the sphere in a normed linear space. Duke Math. J. 25, 553–568 (1958)

    Article  MathSciNet  MATH  Google Scholar 

  20. Fitzpatrick, S.: Metric projections and the differentiability of distance functions. Bull. Aust. Math. Soc. 22, 291–312 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  21. Goebel, K., Schöneberg, R.: Moons, bridges, birds \(\cdots \) and nonexpansive mappings in Hilbert space. Bull. Aust. Math. Soc. 17, 463–466 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  22. Hiriart-Urruty, J.-B.: La conjecture des points les plus éloignés revisitée. Annales des Sciences Mathématiques du Québec 29, 197–214 (2005)

    MathSciNet  Google Scholar 

  23. Hiriart-Urruty, J.-B.: Potpourri of conjectures and open questions in nonlinear analysis and optimization. SIAM Rev. 49, 255–273 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  24. Holmes, R.B.: Geometrical Functional Analysis and Applications. Springer, New York (1975)

    Book  Google Scholar 

  25. Jourani, A., Thibault, L., Zagrodny, D.: Differential properties of the Moreau envelope. J. Funct. Anal. 266, 1185–1237 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  26. Klee, V.: Convexity of Chebyshev sets. Math. Ann. 142, 292–304 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  27. Lau, K.S.: Farthest points in weakly compact sets. Israel J. Math. 22, 168–176 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  28. Mazur, S.: \(\ddot{{\rm U}}\)ber schwache Konvergenz in den Ra\(\ddot{{\rm u}}\)men \((L^P)\). Stud. Math. 4, 128–133 (1933)

    Google Scholar 

  29. Montesinos, V., Zizler, P., Zizler, V.: Some remarks on farthest points. Revista de la Real Academia de Ciencias Exactas, Fisicas y Naturales, Serie A, Matematicas 105, 119–131 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  30. Mordukhovich, B.S.: Variational Analysis and Generalized Differentiation. I: Basic Theory, Grundlehren Series (Fundamental Principles of Mathematical Sciences), vol. 330, p. 584. Springer, Berlin (2006)

    Google Scholar 

  31. Moreau, J.J.: Proximité et dualité dans un espace hilbertien. Bull. Soc. Math. France 93, 273–299 (1965)

    MathSciNet  MATH  Google Scholar 

  32. Moreau, J.J.: Inf-convolution, sous-additivité, convexité des fonctions numériques. J. Math. Pures Appl. 49, 109–154 (1970)

    MathSciNet  MATH  Google Scholar 

  33. Moreau, J.J.: Fonctionnelles Convexes, Collège de France, 1966, 2nd edn. Tor Vergata University, Roma (2003)

    Google Scholar 

  34. Motzkin, T.S., Straus, E.G., Valentine, F.A.: The number of farthest points. Pac. J. Math. 3, 221–232 (1953)

    Article  MathSciNet  MATH  Google Scholar 

  35. Polak, T., Sims, B.: A Banach space which is fully \(2-\)rotund but not locally uniformly rotund. Can. Math. Bull. 26, 118–120 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  36. Schaefer, H.H.: Topological Vector Spaces. Springe, New York (1971). Third Printing Corrected

    Book  MATH  Google Scholar 

  37. Schirotzek, W.: Nonsmooth Analysis. Springer, Berlin (2007)

    Book  MATH  Google Scholar 

  38. Wang, X.: On Chebyshev functions and Klee functions. J. Math. Anal. Appl. 368, 293–310 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  39. Whestphal, U., Schwartz, T.: Farthest points and monotone operators. Bull. Autral. Math. Soc. 58, 75–92 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  40. Wu, Z., Ye, J.J.: Equivalence among various derivatives and subdifferentials of the distance function. J. Math. Anal. Appl. 282, 629–647 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  41. Zagrodny, D.: The cancellation law for inf-convolution of convex functions. Stud. Math. 110, 271–282 (1994)

    MathSciNet  MATH  Google Scholar 

  42. Zagrodny, D.: On the best approximation in real Hilbert spaces. Set-Valued Var. Anal. (submitted)

  43. Zizler, V.: On some extremal problems in Banach spaces. Math. Scand. 32, 214–224 (1973)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

We thank both referees for their comments which allowed us to improve the presentation of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Thibault.

Additional information

This research was supported by Math-AmSud 13math-01 and ECOS projects.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jourani, A., Thibault, L. & Zagrodny, D. The NSLUC property and Klee envelope. Math. Ann. 365, 923–967 (2016). https://doi.org/10.1007/s00208-015-1283-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-015-1283-z

Mathematics Subject Classification

Navigation