Skip to main content
Log in

Modèles semi-factoriels et modèles de Néron

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

Let S be the spectrum of a discrete valuation ring with function field K. Let X be a scheme over S. We will say that X is semi-factorial over S if any invertible sheaf on the generic fiber X K can be extended to an invertible sheaf on X. Here we show that any proper geometrically normal scheme over K admits a proper, flat, normal and semi-factorial model over S. We also construct some semi-factorial compactifications of regular S-schemes, such as Néron models of abelian varieties. The semi-factoriality property for a scheme X/S corresponds to the Néron property of its Picard functor. In particular, one can recover the Néron model of the Picard variety \({{\rm Pic}_{X_K/K,{\rm red}}^0}\) of X K from the Picard functor Pic X/S , as in the known case of curves. This provides some information on the relative algebraic equivalence on the S-scheme X.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anantharaman S.: Schémas en groupes, espaces homogènes et espaces algébriques sur une base de dimension 1. Bull. Soc. Math. Fr. 33, 5–79 (1973)

    MATH  Google Scholar 

  2. Bosch S., Lütkebohmert W., Raynaud M.: Néron Models. Erg. Math. 3. Folge 21. Springer-Verlag, Berlin (1990)

    Google Scholar 

  3. Bosch S., Lütkebohmert W., Raynaud M.: Formal and rigid geometry IV. The reduced fiber theorem. Invent. Math. 119, 361–398 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bosch S., Xarles X.: Component groups of Néron models via rigid uniformization. Math. Ann 306, 459–486 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bourbaki, N.: Algèbre, chaps. 1–3. Masson, Paris (1970); Chaps. 4–7. Masson, Paris (1981)

  6. Bourbaki, N.: Algèbre Commutative, chaps. 1–4. Masson, Paris (1985); Chaps. 5–7. Hermann, Paris (1975)

  7. Boutot J.-F.: Schéma de Picard local Lect Notes Math vol 632. Springer-Verlag, Berlin-Heidelberg-New York (1978)

    Google Scholar 

  8. Conrad B.: Deligne’s notes on Nagata’s compactifications. J. Ramanujan Math. Soc. 22(3), 205–257 (2007)

    MathSciNet  MATH  Google Scholar 

  9. Deligne P.: Le théorème de plongement de Nagata. Kyoto J. Math. 50(4), 661–670 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  10. Ferrand D., Raynaud M.: Fibres formelles d’un anneau local noethérien. Ann. Sci. Ec. Norm. Sup. 4è série, t. 3 3, 295–311 (1970)

    MathSciNet  MATH  Google Scholar 

  11. Grothendieck, A.: Technique de descente et théorèmes d’existence en géométrie algébrique. VI. Les schémas de Picard: propriétés générales. Exp. No. 236, Séminaire Bourbaki, t. 14 (1961–1962). SMF, Paris, 221–243 (1995)

  12. Grothendieck, A., Dieudonné, J.: Le langage des schémas. Publ. Math. IHES 4 (1960)

  13. Grothendieck, A., Dieudonné, J.: Étude globale élémentaire de quelques classes de morphismes. Publ. Math. IHES 8 (1961)

  14. Grothendieck, A., Dieudonné, J.: Étude cohomologique des faisceaux cohérents. Publ. Math. IHES 11 (1961), 17 (1963)

    Google Scholar 

  15. Grothendieck, A., Dieudonné, J.: Étude locale des schémas et des morphismes de schémas. Publ. Math. IHES 20 (1964), 24 (1965), 28 (1966), 32 (1967)

  16. Grothendieck, A., et al.: Schémas en groupes I, II, III. Lect. Notes Math. 151, 152, 153, Springer, Berlin-Heidelberg-New York (1970)

  17. Grothendieck, A., et al.: Théorie des intersections et Théorème de Riemann-Roch. Lect. Notes Math., vol. 225. Springer, Berlin-Heidelberg-New York (1971)

  18. Knutson D.: Algebraic Spaces Lect. Notes Math., vol. 203. Springer, Berlin-Heidelberg-New York (1971)

    Google Scholar 

  19. Künnemann K.: Projective regular models for abelian varieties, semistable reduction, and the height pairing. Duke Math. J. 95(1), 161–212 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  20. Liu Q., Lorenzini D., Raynaud M.: Néron models, Lie algebras, and reduction of curves of genus one. Invent. Math. 157, 455–518 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  21. Lütkebohmert W.: On compactification of schemes. Manuscr. Math. 80, 95–111 (1993)

    Article  MATH  Google Scholar 

  22. Néron A.: Quasi-fonctions et hauteurs sur les variétés abéliennes. Ann. Math. 82, 249–331 (1965)

    Article  MATH  Google Scholar 

  23. Pépin, C.: Néron’s pairing and relative algebraic equivalence. Algebra Number Theory (to appear)

  24. Raynaud M.: Spécialisation du foncteur de Picard. Publ. Math. IHES 38, 27–76 (1970)

    MathSciNet  MATH  Google Scholar 

  25. Raynaud M., Gruson L.: Critères de platitude et de projectivité. Invent. Math. 13, 1–89 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  26. Samuel P.: Anneaux gradués factoriels et modules réflexifs. Bull. Soc. Math. France 92, 237–249 (1964)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cédric Pépin.

Additional information

Partially supported by the FWO project ZKC1235-PS-011 G.0415.10 at KU Leuven.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pépin, C. Modèles semi-factoriels et modèles de Néron. Math. Ann. 355, 147–185 (2013). https://doi.org/10.1007/s00208-012-0784-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-012-0784-2

Mathematics Subject Classification (2000)

Navigation