Skip to main content
Log in

Thermal Non-Equilibrium Flows in Three Space Dimensions

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

We study the equations describing the motion of a thermal non-equilibrium gas in three space dimensions. It is a hyperbolic system of six equations with a relaxation term. The dissipation mechanism induced by the relaxation is weak in the sense that the Shizuta-Kawashima criterion is violated. This implies that a perturbation of a constant equilibrium state consists of two parts: one decays in time while the other stays. In fact, the entropy wave grows weakly along the particle path as the process is irreversible. We study thermal properties related to the well-posedness of the nonlinear system. We also obtain a detailed pointwise estimate on the Green’s function for the Cauchy problem when the system is linearized around an equilibrium constant state. The Green’s function provides a complete picture of the wave pattern, with an exact and explicit leading term. Comparing with existing results for one dimensional flows, our results reveal a new feature of three dimensional flows: not only does the entropy wave not decay, but the velocity also contains a non-decaying part, strongly coupled with its decaying one. The new feature is supported by the second order approximation via the Chapman-Enskog expansions, which are the Navier-Stokes equations with vanished shear viscosity and heat conductivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bianchini S., Hanouzet B., Natalini R.: Asymptotic behavior of smooth solutions for partially dissipative hyperbolic systems with a convex entropy. Commun. Pure Appl. Math. 60(11), 1559–1622 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  2. Butler B.J. Jr.: Perturbation series for eigenvalues of analytic non-symmetric operators. Arch. Math. 10, 21–27 (1959)

    Article  MATH  MathSciNet  Google Scholar 

  3. Chen G.Q., Levermore C.D., Liu T.-P.: Hyperbolic conservation laws with stiff relaxation terms and entropy. Commun. Pure. Appl. Math. 47(6), 787–830 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  4. Dafermos, C.M.: Hyperbolic Conservation Laws in Continuum Physics. Springer, Berlin, 2000

  5. Friedrichs K.O.: Symmetric hyperbolic linear differential equations. Commun. Pure. Appl. Math. 7, 345–392 (1954)

    Article  MATH  MathSciNet  Google Scholar 

  6. Hanouzet B., Natalini R.: Global existence of smooth solutions for partially dissipative hyperbolic systems with a convex entropy. Arch. Ration. Mech. Anal. 169(2), 89–117 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  7. Hsiao L., Liu T.-P.: Convergence to nonlinear diffusion waves for solutions of a system of hyperbolic conservation laws with damping. Commun. Math. Phys. 143(3), 599–605 (1992)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  8. Kato T.: The Cauchy problem for quasi-linear symmetric hyperbolic systems. Arch. Ration. Mech. Anal. 58, 181–205 (1975)

    Article  MATH  MathSciNet  Google Scholar 

  9. Kato, T.: Perturbation Theory for Linear Operators, 2nd edn. Springer, New York, 1976

  10. Kawashima, S.: Systems of a hyperbolic-parabolic composite type, with applications to the equations of magnetohydrodynamics. Doctoral Thesis, Kyoto University, 1983

  11. Kawashima S., Yong W.-A.: Decay estimates for hyperbolic balance laws. Z. Anal. Anwend. 28(1), 1–33 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  12. Li D.L.: The Green’s function of the Navier-Stokes equations for gas dynamics in \({\mathbb{R}^3}\) . Commun. Math. Phys. 257, 579–619 (2005)

    Article  MATH  ADS  Google Scholar 

  13. Liu T.-P.: Hyperbolic conservation laws with relaxation. Commun. Math. Phys. 108(1), 153–175 (1987)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  14. Liu, T.-P., Noh, S.E.: Wave propagation for the compressible Navier-Stokes equations. J. Hyperbolic Differ. Equ. (accepted)

  15. Liu T.-P., Wang W.: The pointwise estimates of diffusion wave for the Navier-Stokes systems in odd multi-dimensions. Commun. Math. Phys. 196(1), 145–173 (1998)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  16. Liu T.-P., Yu S.-H.: Green’s function for Boltzmann equation, 3-D waves. Bullet. Inst. Math. Academia Sinica 1(1), 1–78 (2006)

    MATH  Google Scholar 

  17. Liu T.-P., Yu S.-H.: Solving Boltzmann equation, part I: Green’s function. Bullet. Inst. Math. Academia Sinica 6(2), 115–243 (2011)

    MATH  Google Scholar 

  18. Liu, T.-P., Zeng, Y.: Large time behavior of solutions for general quasilinear hyperbolic-parabolic systems of conservation laws. Mem. Am. Math. Soc. 125(599), viii+120 (1997)

  19. Nishida, T.: Nonlinear hyperbolic equations and related topics in fluid dynamics. Publications Mathématiques D’Orsay, Département de Mathématique, Université de Paris-Sud, Orsay, pp. 78–82, 1978

  20. Shizuta Y., Kawashima S.: Systems of equations of hyperbolic-parabolic type with applications to the discrete Boltzmann equation. Hokkaido Math. J. 14, 249–275 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  21. Shu C.-W., Zeng Y.: High-order essentially non-oscillatory scheme for viscoelasticity with fading memory. Quart. Appl. Math. 55(3), 459–484 (1997)

    MATH  MathSciNet  Google Scholar 

  22. Vincenti, W., Kruger, C. Jr: Introduction to Physical Gas Dynamics. Krieger, Malabar, 1986

  23. Yong W.-A.: Singular perturbations of first-order hyperbolic systems with stiff source terms. J. Differ. Equ. 155, 89–132 (1999)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  24. Yong W.-A.: Entropy and global existence for hyperbolic balance laws. Arch. Ration. Mech. Anal. 172(2), 247–266 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  25. Zeng, Y.: L 1 asymptotic behavior of compressible, isentropic, viscous 1-D flow. Commun. Pure Appl. Math. 47, 1053–1082 (1994)

  26. Zeng Y.: Gas dynamics in thermal nonequilibrium and general hyperbolic systems with relaxation. Arch. Ration. Mech. Anal. 150(3), 225–279 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  27. Zeng Y.: Gas flows with several thermal nonequilibrium modes. Arch. Ration. Mech. Anal. 196, 191–225 (2010)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanni Zeng.

Additional information

Communicated by A. Bressan

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeng, Y. Thermal Non-Equilibrium Flows in Three Space Dimensions. Arch Rational Mech Anal 219, 27–87 (2016). https://doi.org/10.1007/s00205-015-0892-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-015-0892-8

Keywords

Navigation