Skip to main content

Advertisement

Log in

A Priori Estimates for Fractional Nonlinear Degenerate Diffusion Equations on Bounded Domains

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

We investigate quantitative properties of the nonnegative solutions \({u(t,x)\geq 0}\) to the nonlinear fractional diffusion equation, \({\partial_t u + \mathcal{L} (u^m)=0}\), posed in a bounded domain, \({x\in\Omega\subset \mathbb{R}^N}\), with m > 1 for t > 0. As \({\mathcal{L}}\) we use one of the most common definitions of the fractional Laplacian \({(-\Delta)^s}\), 0 < s < 1, in a bounded domain with zero Dirichlet boundary conditions. We consider a general class of very weak solutions of the equation, and obtain a priori estimates in the form of smoothing effects, absolute upper bounds, lower bounds, and Harnack inequalities. We also investigate the boundary behaviour and we obtain sharp estimates from above and below. In addition, we obtain similar estimates for fractional semilinear elliptic equations. Either the standard Laplacian case s = 1 or the linear case m = 1 are recovered as limits. The method is quite general, suitable to be applied to a number of similar problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Adams, R.A., Fournier, J.F.: Sobolev spaces, 2nd edn. Pure and Applied Mathematics (Amsterdam), Vol. 140. Elsevier/Academic Press, Amsterdam, 2003

  2. Aronson D.G., Caffarelli L.A.: The initial trace of a solution of the porous medium equation. Trans. Am. Math. Soc. 280, 351–366 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  3. Athanasopoulos I., Caffarelli L.A.: Continuity of the temperature in boundary heat control problems. Adv. Math. 224(1), 293–315 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  4. Bénilan, P., Crandall, M.G.: Regularizing effects of homogeneous evolution equations. In: Contributions to Analysis and Geometry (suppl. to Amer. Jour. Math.). Johns Hopkins University Press, Baltimore, 23–39, 1981

  5. Blumenthal R.M., Getoor R.K.: Some theorems on stable processes. Trans. Am. Math. Soc. 95(2), 263–273 (1960)

    Article  MATH  MathSciNet  Google Scholar 

  6. Bonforte M., Grillo G., Vázquez J.L.: Behaviour near extinction for the Fast Diffusion Equation on bounded domains. J. Math. Pures Appl. 97, 1–38 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  7. Bonforte M., Grillo G., Vázquez J.L.: Quantitative local bounds for subcritical semilinear elliptic equations. Milan J. Math. 80, 65–118 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  8. Bonforte, M., Sire, Y., Vázquez, J.L.: Existence, uniqueness and asymptotic behaviour for fractional porous medium on bounded domains. Preprint (2014). To apppear in Discret. Contin. Dyn. Syst. (2015) http://arxiv.org/abs/1404.6195

  9. Bonforte M., Vázquez J.L.: Global positivity estimates and Harnack inequalities for the fast diffusion equation. J. Funct. Anal. 240(2), 399–428 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  10. Bonforte M., Vázquez J.L.: Positivity, local smoothing, and Harnack inequalities for very fast diffusion equations. Adv. Math. 223, 529–578 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  11. Bonforte M., Vázquez J.L.: Quantitative local and global a priori estimates for fractional nonlinear diffusion equations. Adv. Math. 250, 242–284 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  12. Bonforte, M., Vázquez, J.L.: Nonlinear degenerate diffusion equations on bounded domains with restricted fractional Laplacian (in preparation (2015))

  13. Brezis, H., Cazenave, T., Martel, Y., Ramiandrisoa, A.: Blow up for \({u_t-\Delta u=g(u)}\) revisited. Adv. Differ. Equ. 1, 73–90 (1996)

  14. Cabré X., Tan J.: Positive solutions of nonlinear problems involving the square root of the Laplacian. Adv. Math. 224(5), 2052–2093 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  15. Caffarelli, L., Silvestre, L.: An extension problem related to the fractional Laplacian. Commun. Partial Differ. Equ. 32(7–9), 1245–1260 (2007)

  16. Capella A., Dávila J., Dupaigne L., Sire Y.: Regularity of radial extremal solutions for some non local semilinear equations. Commun. Partial Differ. Equ. 36(8), 1353–1384 (2011)

    Article  MATH  Google Scholar 

  17. Chen Z.-Q., Song R.: Intrinsic ultracontractivity and conditional gauge for symmetric stable processes. J. Funct. Anal. 150, 204–239 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  18. Chen Z.-Q., Song R.: Estimates on Green functions and Poisson kernels for symmetric stable processes. Math. Ann. 312, 465–501 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  19. Chen Z.-Q., Song R.: Intrinsic ultracontractivity, conditional lifetimes and conditional gauge for symmetric stable processes on rough domains. Ill. J. Math. 44, 138–160 (2000)

    MATH  MathSciNet  ADS  Google Scholar 

  20. Dahlberg B., Kenig C.E.: Nonnegative solutions of the initial-Dirichlet problem for generalized porous medium equation in cylinders. J. Am. Math. Soc. 1, 401–412 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  21. Daskalopoulos, P., Kenig, C.E.: Degenerate diffusions. In: Initial value problems and local regularity theory. EMS Tracts in Mathematics, Vol. 1. EMS, Zürich, 2007

  22. Davies E.B.: Explicit constants for Gaussian upper bounds on heat kernels. Am. J. Math. 109(2), 319–333 (1987)

    Article  MATH  Google Scholar 

  23. Davies E.B.: The equivalence of certain heat kernel and Green function bounds. J. Funct. Anal. 71(1), 88–103 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  24. Davies, E.B.: Heat kernels and spectral theory. In: Cambridge Tracts in Mathematics, Vol. 92. Cambridge University Press, Cambridge, 1990

  25. Davies, E.B.: Spectral theory and differential operators. In: Cambridge Studies in Advanced Mathematics, Vol. 42. Cambridge University Press, Cambridge, 1995

  26. Davies E.B., Simon B.: Ultracontractivity and the heat kernel for Schrdinger operators and Dirichlet Laplacians. J. Funct. Anal. 59(2), 335–395 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  27. Díaz, J.I., Rakotoson, J.M.: On the differentiability of very weak solutions with right-hand side data integrable with respect to the distance to the boundary. J. Funct. Anal. 257, 807–831 (2009)

  28. DiBenedetto, E.: Intrinsic Harnack type inequalities for solutions of certain degenerate parabolic equations. Arch. Ration. Mech. Anal. 100, 129–147 (1988)

  29. DiBenedetto, E., Gianazza, U., Vespri, V.: Harnack’ s inequality for degenerate and singular parabolic equations. In: Springer Monographs in Mathematics. Springer, 2011

  30. Fabes E.B., Garofalo N., Salsa S.: A backward Harnack inequality and Fatou theorem for nonnegative solutions of parabolic equations. Ill. J. Math. 30(4), 536–565 (1986)

    MATH  MathSciNet  Google Scholar 

  31. Farkas W., Jacob N.: Sobolev spaces on non-smooth domains and Dirichlet forms related to subordinate reflecting diffusions. Math. Nachr. 224, 75–104 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  32. Glover, J., Rao, M., Sikic, H., Song, R.: \({\Gamma}\)-potentials. In: Classical and modern potential theory and applications (Chateau de Bonas, 1993), pp. 217–232. Kluwer Academic Publishers, Dordrecht, 1994

  33. Jacob N., Schilling R.: Some Dirichlet spaces obtained by subordinate reflected diffusions. Rev. Mat. Iberoamericana 15, 59–91 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  34. McKenna P.J., Reichel W.: A priori bounds for semilinear equations and a new class of critical exponents for Lipschitz domains. J. Funct. Anal. 244, 220–246 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  35. Kulczycki T.: Properties of Green function of symmetric stable processes. Probab. Math. Stat. 17, 339–364 (1997)

    MATH  MathSciNet  Google Scholar 

  36. Kulczycki T.: Intrinsic ultracontractivity for symmetric stable processes. Bull. Pol. Acad. Sci. Math. 46, 325–334 (1998)

    MATH  MathSciNet  Google Scholar 

  37. Lions, J.-L., Magenes, E.: Non-homogeneous boundary value problems and applications. Vol. I. (Translated from the French by P. Kenneth) GMW 181. Springer, New York, 1972)

  38. de Pablo, A., Quirós, F., Rodríguez, A., Vázquez, J.L.: A fractional porous medium equation. Adv. Math. 226(2), 1378–1409 (2011)

  39. de Pablo, A., Quirós, F., Rodríguez, A., Vázquez, J.L.: A general fractional porous medium equation. Commun. Pure Appl. Math. 65, 1242–1284 (2012)

  40. Pazy, A.: Semigroups of linear operators and applications to partial differential equations. Springer, NewYork, 1983

  41. Pierre, M.: Uniqueness of the solutions of \({u_t-\Delta \phi(u)=0}\) with initial datum a measure. Nonlinear Anal. Theory Method Appl. 6, 175–187 (1982)

  42. Servadei R., Valdinoci E.: On the spectrum of two different fractional operators. Proc. R. Soc. Edinb. Sect. A 144(4), 831–855 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  43. Song R., Vondracek Z.: Potential theory of subordinate killed Brownian motion in a domain. Probab. Theory Relat. Fields 125, 578–592 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  44. Stein, E.: Singular Integrals and Differentiability Properties of Functions. Princeton University Press, Princeton, 1970

  45. Vázquez J.L.: The Dirichlet problem for the porous medium equation in bounded domains. Asymptot. Behav. Monatsh. Math. 142, 81–111 (2004)

    Article  MATH  Google Scholar 

  46. Vázquez, J.L.: The Porous Medium Equation. Mathematical Theory. Vol. Oxford Mathematical Monographs. Oxford University Press, Oxford, 2007

  47. Vázquez, J.L.: Barenblatt solutions and asymptotic behaviour for a nonlinear fractional heat equation of porous medium type. J. Eur. Math. Soc. (JEMS) 16(4), 769–803 (2014)

  48. Yosida, K.: Functional Analysis, 6th edn. Springer, Berlin, 1980

  49. Zhang Q.S.: The boundary behavior of heat kernels of Dirichlet Laplacians. J. Differ. Equ. 182(2), 416–430 (2002)

    Article  MATH  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan Luis Vázquez.

Additional information

Communicated by S. Serfaty

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bonforte, M., Vázquez, J.L. A Priori Estimates for Fractional Nonlinear Degenerate Diffusion Equations on Bounded Domains. Arch Rational Mech Anal 218, 317–362 (2015). https://doi.org/10.1007/s00205-015-0861-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-015-0861-2

Keywords

Navigation