Skip to main content
Log in

Domain Walls in the Coupled Gross–Pitaevskii Equations

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

A thorough study of domain wall solutions in coupled Gross–Pitaevskii equations on the real line is carried out including existence of these solutions; their spectral and nonlinear stability; their persistence and stability under a small localized potential. The proof of existence is variational and is presented in a general framework: we show that the domain wall solutions are energy minimizers within a class of vector-valued functions with nontrivial conditions at infinity. The admissible energy functionals include those corresponding to coupled Gross–Pitaevskii equations, arising in modeling of Bose–Einstein condensates. The results on spectral and nonlinear stability follow from properties of the linearized operator about the domain wall. The methods apply to many systems of interest and integrability is not germane to our analysis. Finally, sufficient conditions for persistence and stability of domain wall solutions are obtained to show that stable pinning occurs near maxima of the potential, thus giving rigorous justification to earlier results in the physics literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alama, S., Bronsard, L., Gui, C.: Stationary layered solutions in \({\mathbb{R}^2}\) for an Allen–Cahn system with multiple well potential. Calc. Var. Partial Differ. Equ. 5(4), 359–390 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  2. Alikakos, N., Fusco, G.: On the connection problem for potentials with several global minima. Indiana Univ. Math. J. 57(4), 1871–1906 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bethuel, F., Gravejat, P., Saut, J.C., Smets, D.: Orbital stability of the black soliton for the Gross–Pitaevskii equation. Indiana Univ. Math. J. 57, 2611–2642 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  4. De Bouard, A.: Instability of stationary bubbles. SIAM J. Math. Anal. 26, 566–582 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bronsard, L., Gui, C., Schatzman, M.: A three-layered minimizer in \({\mathbb{R}^2}\) for a variational problem with a symmetric three-well potential. Commun. Pure Appl. Math. 49(7), 677–715 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  6. Cazenave, T., Lions, P.L.: Orbital stability of standing waves for some nonlinear Schrödinger equations. Commun. Math. Phys. 85, 549–561 (1982)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Coddington, E.A., Levinson, N.: Theory of Ordinary Differential Equations. McGraw-Hill, New York (1955)

    MATH  Google Scholar 

  8. Di Menza, L., Gallo, C.: The black solitons of one-dimensional NLS equations. Nonlinearity 20, 461–496 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Dror, N., Malomed, B.A., Zeng, J.: Domain walls and vortices in linearly coupled systems. Phys. Rev. E 84, 046602 (2011)

    Article  ADS  Google Scholar 

  10. Grillakis, M., Shatah, J., Strauss, W.A.: Stability theory of solitary waves in the presence of symmetry I. J. Funct. Anal. 74, 160–197 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  11. Hislop, P.D., Sigal, I.M.: Introduction to Spectral Theory: With Applications to Schrödinger Operators, vol. 113. Springer, New York (1996)

    Book  Google Scholar 

  12. Haelterman, M., Sheppard, A.P.: Vector soliton associated with polarization modulational instability in the normal-dispersion regime. Phys. Rev. E 49, 3389–3399 (1994)

    Article  ADS  MathSciNet  Google Scholar 

  13. Haelterman, M., Sheppard, A.P.: Extended modulation instability and new type of solitary wave in coupled nonlinear Schrödinger equations. Phys. Lett. A 185, 265–272 (1994)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Malomed, B.A., Nepomnyashchy, A.A., Tribelsky, M.I.: Domain boundaries in convection patterns. Phys. Rev. A 42, 7244–7263 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  15. Malomed, B.A.: Domain wall between traveling waves. Phys. Rev. E 50, R3310–R3313 (1994)

    Article  ADS  MathSciNet  Google Scholar 

  16. McGehee, R., Sander, E.: A new proof of the stable manifold theorem. Z. Angew. Math. Phys. 47, 497–513 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  17. Pelinovsky, D.E., Kevrekidis, P.G.: Dark solitons in external potentials. Z. Angew. Math. Phys. 59, 559–599 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  18. Sternberg, P.: Vector-valued local minimizers of nonconvex variational problems. Current directions in nonlinear partial differential equations (Provo, UT, 1987). Rocky Mt. J. Math. 21(2), 799807 (1991)

    Article  MathSciNet  Google Scholar 

  19. Zhidkov, P.E.: Korteweg–De Vries and Nonlinear Schrödinger Equations: Qualitative Theory. Lecture Notes in Mathematics, vol. 1756. Springer, Berlin (2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lia Bronsard.

Additional information

Communicated by D. Kinderlehrer

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alama, S., Bronsard, L., Contreras, A. et al. Domain Walls in the Coupled Gross–Pitaevskii Equations. Arch Rational Mech Anal 215, 579–610 (2015). https://doi.org/10.1007/s00205-014-0789-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-014-0789-y

Keywords

Navigation