Skip to main content
Log in

Dispersion Equation for Water Waves with Vorticity and Stokes Waves on Flows with Counter-Currents

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

The two-dimensional free-boundary problem of steady periodic waves with vorticity is considered for water of finite depth. We investigate how flows with small-amplitude Stokes waves on the free surface bifurcate from a horizontal parallel shear flow in which counter-currents may be present. Two bifurcation mechanisms are described: one for waves with fixed Bernoulli’s constant, and the other for waves with fixed wavelength. In both cases the corresponding dispersion equations serve for defining wavelengths from which Stokes waves bifurcate. Necessary and sufficient conditions for the existence of roots of these equations are obtained. Two particular vorticity distributions are considered in order to illustrate the general results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Amick C.J., Toland J.F.: On solitary waves of finite amplitude. Arch. Ration. Mech. Anal. 76, 9–95 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  2. Benjamin T.B.: A unified theory of conjugate flows. Philos. Trans. R. Soc. Lond. A 269, 587–643 (1971)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  3. Benjamin T.B.: Verification of the Benjamin–Lighthill conjecture about steady water waves. J. Fluid Mech. 295, 337–356 (1995)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  4. Benjamin T.B., Lighthill M.J.: On cnoidal waves and bores. Proc. R. Soc. Lond. A 224, 448–460 (1954)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  5. Burton G.R., Toland J.F.: Surface waves on steady perfect-fluid flows with vorticity. Commun. Pure Appl. Math. 64, 975–1007 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  6. Constantin A.: On the deep water wave motion. J. Phys. A 34, 1405–1417 (2001)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  7. Constantin A.: Two-dimensionality of gravity water flows of constant non-zero vorticity beneath a surface wave train. Eur. J. Mech. B/Fluids 30, 12–16 (2011)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  8. Constantin, A.: A Hamiltonian formulation for free surface water waves with non-vanishing vorticity. J. Nonlinear Math. Phys. 12(Suppl. 1), 202–211 (2005)

  9. Constantin A.: A dynamical systems approach towards isolated vorticity regions for tsunami background states. Arch. Ration. Mech. Anal. 200, 239–253 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  10. Constantin A.: Dispersion relations for periodic traveling water waves in flows with discontinuous vorticity. Commun. Pure Appl. Anal. 11, 1397–1406 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  11. Constantin A., Ehrnström M., Wahlén E.: Symmetry of steady periodic gravity water waves with vorticity. Duke Math. J. 140, 591–603 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  12. Constantin A., Escher J.: Symmetry of steady deep-water waves with vorticity. Eur. J. Appl. Math. 15, 755–768 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  13. Constantin A., Escher J.: Symmetry of steady periodic surface water waves with vorticity. J. Fluid Mech. 498, 171–181 (2004)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  14. Constantin A., Escher J.: Analyticity of periodic travelling free surface water waves with vorticity. Ann. Math. 173, 559–568 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  15. Constantin A., Ivanov R.I., Prodanov E.M.: Nearly-Hamiltonian structure for water waves with constant vorticity. J. Math. Fluid Mech. 10, 224–237 (2008)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  16. Constantin A., Sattinger D., Strauss W.: Variational formulations for steady water waves with vorticity. J. Fluid Mech.548, 151–163 (2006)

    Article  MathSciNet  ADS  Google Scholar 

  17. Constantin A., Strauss W.: Exact steady periodic water waves with vorticity. Commun. Pure Appl. Math. 57, 481–527 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  18. Constantin A., Strauss W.: Rotational steady water waves near stagnation. Philos. Trans. R. Soc. A 365, 2227–2239 (2007)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  19. Constantin A., Strauss W.: Stability properties of steady water waves with vorticity. Commun. Pure Appl. Math. 60, 911–950 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  20. Constantin A., Strauss W.: Periodic travelling gravity water waves with discontinuous vorticity. Arch. Ration. Mech. Anal. 202, 133–175 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  21. Constantin A., Varvaruca E.: Steady periodic water waves with constant vorticity: regularity and local bifurcation. Arch. Ration. Mech. Anal. 199, 33–67 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  22. Crandall M.G., Rabinowitz P.H.: Bifurcation from simple eigenvalues. J. Funct. Anal. 8, 321–340 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  23. Doole S.H.: The pressure head and flowforce parameter space for waves with constant vorticity. Q. J. Mech. Appl. Math. 51, 61–71 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  24. Drazin, P.G., Reid, W.H.: Hydrodynamic Stability, 2nd edn. Cambridge University Press, Cambridge, 2004

  25. Dubreil-Jacotin M.-L.: Sur la détermination rigoureuse des ondes permanentes priodiques d’ampleur finie. J. Math. Pures Appl. 13, 217–291 (1934)

    Google Scholar 

  26. Ehrnström M.: A unique continuation principle for steady symmetric water waves with vorticity. J. Nonlinear Math. Phys. 13, 484–491 (2006)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  27. Ehrnström M.: A uniqueness result for steady symmetric water waves with affine vorticity. Dyn. Contin. Discr. Impuls. Syst., Ser. A: Math. Anal. 14, 609–614 (2007)

    MATH  Google Scholar 

  28. Ehrnström M.: Deep-water waves with vorticity: symmetry and rotational behaviour. Discrete Contin. Dyn. Syst. 19, 483–491 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  29. Ehrnström M.: A new formulation of the water wave problem for Stokes waves of constant vorticity. J. Math. Anal. Appl. 339, 636–643 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  30. Ehrnström M.: On streamlines and particle paths of gravitational water waves. Nonlinearity 21, 1141–1154 (2008)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  31. Ehrnström M., Escher J., Villari G.: Steady water waves with multiple critical layers: interior dynamics. J. Math. Fluid Mech. 14, 407–419 (2012)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  32. Ehrnström M., Escher J., Wahlén E.: Steady water waves with multiple critical layers. SIAM J. Math. Anal. 43, 1436–1456 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  33. Ehrnström M., Villari G.: Linear water waves with vorticity: rotational features and particle paths. J. Differ. Equ. 244, 1888–1909 (2008)

    Article  MATH  ADS  Google Scholar 

  34. Escher J.: Regularity of rotational travelling water waves. Phil. Trans. R. Soc. A 370, 1602–1615 (2012)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  35. Fenton J.D.: Some results for surface gravity waves on shear flows. J. Inst. Math. Appl. 12, 1–20 (1973)

    Article  MATH  Google Scholar 

  36. Gerstner F.: Theorie der Wellen samt einer daraus abgeleiteten Theorie der Deichprofile. Ann. Phys. 2, 412–445 (1809)

    Article  Google Scholar 

  37. Goyon R.: Contribution à à la théorie des houles. Ann. Fac. Sci. Univ. Toulouse 22, 1–55 (1958)

    Article  MathSciNet  Google Scholar 

  38. Groves M.D., Wahlén E.: Small-amplitude Stokes and solitary gravity water waves with an arbitrary distribution of vorticity. Physica D 237, 1530–1538 (2008)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  39. Henry, D.: On Gerstner’s water wave. J. Nonlinear Math. Phys. 15(Suppl. 2), 87–95 (2008)

  40. Henry D.: On the pressure transfer function for solitary water waves with vorticity. Math. Ann. 357, 23–30 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  41. Henry D.: Steady periodic waves bifurcating for fixed-depth rotational flows. Q. Appl. Math. 71, 455–487 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  42. Henry D.: Dispersion relations for steady periodic water waves with an isolated layer of vorticity at the surface. Nonlinear Anal. Real World Appl. 14, 1034–1043 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  43. Hur V.M.: Global bifurcation of deep-water waves with vorticity. SIAM J. Math. Anal. 37, 1482–1521 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  44. Hur V.M.: Symmetry of steady periodic water waves with vorticity. Philos. Trans. R. Soc. A 365, 2203–2214 (2007)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  45. Hur V.M.: Exact solitary water waves with vorticity. Arch. Ration. Mech. Anal. 188, 213–244 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  46. Hur V.M.: Symmetry of solitary water waves with vorticity. Math. Res. Lett. 15, 491–510 (2008)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  47. Hur V.M.: Stokes waves with vorticity. J. d’Anal. Math. 113, 331–386 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  48. Hur V.M.: Analyticity of rotational flows beneath solitary water waves. Int. Math. Res. Not. IMRN 11, 2550–2570 (2012)

    MathSciNet  Google Scholar 

  49. Hur, V.M., Lin, Z.: Unstable surface waves in running water. Commun. Math. Phys. 282, 733–796 (2008). [Erratum, 318, 857–861 (2013)]

  50. Kalisch H.: A uniqueness result for periodic travelling waves in water of finite depth. Nonlinear Anal. 58, 779–785 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  51. Keady G., Norbury J.: Waves and conjugate streams with vorticity. Mathematika 25, 129–150 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  52. Ko J., Strauss W.: Large-amplitude steady rotational water waves. Eur. J. Mech. B/Fluids 27, 96–109 (2008)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  53. Ko J., Strauss W.: Effect of vorticity on steady water waves. J. Fluid Mech 608, 197–215 (2008)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  54. Kozlov, V., Kuznetsov, N.: On behaviour of free-surface profiles for bounded steady water waves. J. Math. Pures Appl. 90, 1–14

  55. Kozlov V., Kuznetsov N.: Bounds for arbitrary steady gravity waves on water of finite depth. J. Math. Fluid Mech. 11, 325–347 (2009)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  56. Kozlov V., Kuznetsov N.: The Benjamin–Lighthill conjecture for near-critical values of Bernoulli’s constant. Arch. Ration. Mech. Anal. 197, 433–488 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  57. Kozlov V., Kuznetsov N.: The Benjamin–Lighthill conjecture for steady water waves (revisited). Arch. Ration. Mech. Anal. 201, 631–645 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  58. Kozlov V., Kuznetsov N.: Steady free-surface vortical flows parallel to the horizontal bottom. Q. J. Mech. Appl. Math. 64, 371–399 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  59. Kozlov V., Kuznetsov N.: Bounds for steady water waves with vorticity. J. Differ. Equ. 252, 663–691 (2012)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  60. Kozlov V., Kuznetsov N.: No steady water waves of small amplitude are supported by a shear flow with a still free surface. J. Fluid Mech. 717, 523–534 (2013)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  61. Kozlov, V., Kuznetsov, N.: Steady water waves with vorticity: spatial Hamiltonian structure. J. Fluid Mech. 733, R1 (2013). doi:10.1017/jfm.2013.449

  62. Kozlov, V., Kuznetsov, N., Lokharu, E.: Steady water waves with vorticity: an analysis of the dispersion equation. J. Fluid Mech. 751, R3 (2014). doi:10.1017/jfm.2014.322

  63. Lavrentiev, M., Shabat, B.: Effets Hydrodynamiques et Modèles Mathématiques. Mir Publishers, Moscou, 1980

  64. Matioc B.-V.: Analyticity of the streamlines for periodic traveling water waves with bounded vorticity. Int. Math. Res. Not. IMRN, 17, 3858–3871 (2011)

    MathSciNet  Google Scholar 

  65. Matioc A.-V., Matioc B.-V.: Regularity and symmetry properties of rotational solitary water waves. J. Evol. Equ. 12, 481–494 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  66. Scott Russell, J.: Report on Waves. Report of the 14th meeting of the British Association for the Advancement of Science, pp. 311–390. John Murray, London, 1844

  67. Serrin, J.: Mathematical principles of classical fluid mechanics. Handbuch der Physik, Bd VIII/1 (Ed. S. Flügge) Springer, Berlin, 125–263, 1959

  68. Stokes, G.G.: On the theory of oscillatory waves. Camb. Philos. Soc. Trans. 8, 441–455 (1847). [Also, Mathematical and Physical Papers, vol. I, pp. 197–219, Cambridge, 1880]

  69. Strauss W.: Steady water waves. Bull. Am. Math. Soc. 47, 671–694 (2010)

    Article  MATH  Google Scholar 

  70. Swan C., Cummins I., James R.: An experimental study of two-dimensional surface water waves propagating in depth-varying currents. J. Fluid Mech. 428, 273–304 (2001)

    Article  MATH  ADS  Google Scholar 

  71. Telesda Silva A.F., Peregerine D.H.: Steep, steady surface waves on water of finite depth with constant vorticity. J. Fluid Mech. 195, 281–302 (1988)

    Article  MathSciNet  ADS  Google Scholar 

  72. Ter-Krikorov, A.M.: A solitary wave on the surface of a vortical flow. Zh. Vychisl. Mat. Mat. Fiz. 1, 1077–1088 (1961, in Russian). MR0145776, 26#3304

  73. Thomas G.P.: Wave-current interactions: an experimental and numerical study. J. Fluid Mech. 216, 505–536 (1990)

    Article  MATH  ADS  Google Scholar 

  74. Thomson W.: (Lord Kelvin) On a disturbing infinity in Lord Rayleighs solution for waves in a plane vortex stratum. Nature 23, 45–46 (1880)

    Article  ADS  Google Scholar 

  75. Vanden-Broeck J.-M.: Steep solitary waves in water of finite depth with constant vorticity. J. Fluid Mech. 274, 339–348 (1994)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  76. Vanden-Broeck J.-M.: New families of steep solitary waves in water of finite depth with constant vorticity. Eur. J. Mech. B/Fluids 14, 761–774 (1995)

    MathSciNet  MATH  Google Scholar 

  77. Vanden-Broeck J.-M.: Periodic waves with constant vorticity in water of infinite depth. IMA J. Appl. Math. 56, 207–217 (1996)

    Article  MATH  ADS  Google Scholar 

  78. Varvaruca E.: On some properties of travelling water waves with vorticity. SIAM J. Math. Anal. 39, 1686–1692 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  79. Varvaruca E.: On the existence of extreme waves and the Stokes conjecture with vorticity. J. Differ. Equ. 246, 4043–4076 (2009)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  80. Varvaruca E., Weiss G.S.: The Stokes conjecture for waves with vorticity. Ann. Inst. H. Poincaré, Anal. Non Linéaire 29, 861–885 (2012)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  81. Varvaruca E., Zarnescu A.: Equivalence of weak formulations of the steady water waves equations. Philos. Trans. R. Soc. Lond. 370, 1703–1719 (2012)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  82. Wahlén E.: On steady gravity waves with vorticity. Int. Math. Res. Not. 2004, 2881–2896 (2004)

    Article  MATH  Google Scholar 

  83. Wahlén E.: A note on steady gravity waves with vorticity. Int. Math. Res. Not. 7, 389–396 (2005)

    Article  Google Scholar 

  84. Wahlén E.: On rotational water waves with surface tension. Philos. Trans. R. Soc. A 365, 2215–2225 (2007)

    Article  MATH  ADS  Google Scholar 

  85. Wahlén E.: Steady water waves with a critical layer. J. Differ. Equ. 246, 2468–2483 (2009)

    Article  MATH  ADS  Google Scholar 

  86. Weiss G.S., Zhang G.: The second variation of the stream function energy of water waves with vorticity. J. Differ. Equ. 253, 2646–2656 (2012)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  87. Wheeler M.H.: Large-amplitude solitary water waves with vorticity. SIAM J. Math. Anal. 45, 2937–2994 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  88. Wheeler, M.H.: The Froude number for solitary water waves with vorticity. Preprint available online at http://arxiv.org/abs/1405.1083

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikolay Kuznetsov.

Additional information

Communicated by P. Rabinowitz

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kozlov, V., Kuznetsov, N. Dispersion Equation for Water Waves with Vorticity and Stokes Waves on Flows with Counter-Currents. Arch Rational Mech Anal 214, 971–1018 (2014). https://doi.org/10.1007/s00205-014-0787-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-014-0787-0

Keywords

Navigation