Skip to main content

Advertisement

Log in

Collective Excitations of Bose Gases in the Mean-Field Regime

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

We study the spectrum of a large system of N identical bosons interacting via a two-body potential with strength 1/N. In this mean-field regime, Bogoliubov’s theory predicts that the spectrum of the N-particle Hamiltonian can be approximated by that of an effective quadratic Hamiltonian acting on Fock space, which describes the fluctuations around a condensed state. Recently, Bogoliubov’s theory has been justified rigorously in the case that the low-energy eigenvectors of the N-particle Hamiltonian display complete condensation in the unique minimizer of the corresponding Hartree functional. In this paper, we shall justify Bogoliubov’s theory for the high-energy part of the spectrum of the N-particle Hamiltonian corresponding to (non-linear) excited states of the Hartree functional. Moreover, we shall extend the existing results on the excitation spectrum to the case of non-uniqueness and/or degeneracy of the Hartree minimizer. In particular, the latter covers the case of rotating Bose gases, when the rotation speed is large enough to break the symmetry and to produce multiple quantized vortices in the Hartree minimizer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aftalion, A.: Vortices in Bose–Einstein Condensates. In series: Progress in nonlinear differential equations and their applications, vol. 67. Springer, Birkhäuser Basel (2006)

  2. Aschbacher W., Fröhlich J., Graf G., Schnee K., Troyer M.: Symmetry breaking regime in the nonlinear Hartree equation. J. Math. Phys. 43, 3879–3891 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Bogoliubov N.N.: On the theory of superfluidity. J. Phys. (USSR) 11, 23 (1947)

    Google Scholar 

  4. Dereziński, J., Napiórkowski, M.: Excitation spectrum of interacting bosons in the mean-field infinite-volume limit. Ann. Henri Poincaré (to appear). arXiv:1305.3641

  5. Fannes M., Spohn H., Verbeure A.: Equilibrium states for mean field models. J. Math. Phys. 21, 355–358 (1980)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Fetter A.: Rotating trapped Bose–Einstein condensates. Rev. Mod. Phys. 81, 647–691 (2009)

    Article  ADS  Google Scholar 

  7. Grech P., Seiringer R.: The excitation spectrum for weakly interacting bosons in a trap. Commun. Math. Phys. 322, 559–591 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. Guo Y., Seiringer R.: On the mass concentration for Bose–Einstein condensates with attractive interactions. Lett. Math. Phys. 104, 141–156 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  9. Hudson, R.L., Moody, G.R.: Locally normal symmetric states and an analogue of de Finetti’s theorem. Z. Wahrscheinlichkeitstheorie Verw. Geb. 33, 343–351 (1975/76)

  10. Lewin M.: Geometric methods for nonlinear many-body quantum systems. J. Funct. Anal. 260, 3535–3595 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  11. Lewin M., Nam P.T., Rougerie N.: Derivation of Hartree’s theory for generic mean-field Bose gases. Adv. Math. 254, 570–621 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  12. Lewin, M., Nam, P.T., Serfaty, S., Solovej, J.P.: Bogoliubov spectrum of interacting Bose gases. Commun. Pure Appl. Math. (2014). doi:10.1002/cpa.21519

  13. Petz D., Raggio G.A., Verbeure A.: Asymptotics of Varadhan-type and the Gibbs variational principle. Commun. Math. Phys. 121, 271–282 (1989)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Raggio G.A., Werner R.F.: Quantum statistical mechanics of general mean field systems. Helv. Phys. Acta 62, 980–1003 (1989)

    MathSciNet  MATH  Google Scholar 

  15. Reed M., Simon B.: Methods of Modern Mathematical Physics. II. Fourier Analysis, Self-Adjointness. Academic Press, (1975)

    MATH  Google Scholar 

  16. Reed M., Simon B.: Methods of Modern Mathematical Physics. IV. Analysis of Operators. Academic Press, New York (1978)

    MATH  Google Scholar 

  17. Seiringer R.: Gross–Pitaevskii theory of the rotating Bose gas. Commun. Math. Phys. 229, 491–509 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Seiringer R.: Ground state asymptotics of a dilute, rotating gas. J. Phys. A 36, 9755–9778 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. Seiringer R.: The excitation spectrum for weakly interacting bosons. Commun. Math. Phys. 306, 565–578 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. Størmer E.: Symmetric states of infinite tensor products of C *-algebras. J. Funct. Anal. 3, 48– (1969)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Phan Thành Nam.

Additional information

Communicated by S. Serfaty

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nam, P.T., Seiringer, R. Collective Excitations of Bose Gases in the Mean-Field Regime. Arch Rational Mech Anal 215, 381–417 (2015). https://doi.org/10.1007/s00205-014-0781-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-014-0781-6

Keywords

Navigation