Skip to main content
Log in

Sharp Two-Sided Heat Kernel Estimates of Twisted Tubes and Applications

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

We prove on-diagonal bounds for the heat kernel of the Dirichlet Laplacian \({-\Delta^D_\Omega}\) in locally twisted three-dimensional tubes Ω. In particular, we show that for any fixed x the heat kernel decays for large times as \({{\rm e}^{-E_1t} t^{-3/2}}\) , where E 1 is the fundamental eigenvalue of the Dirichlet Laplacian on the cross section of the tube. This shows that any, suitably regular, local twisting speeds up the decay of the heat kernel with respect to the case of straight (untwisted) tubes. Moreover, the above large time decay is valid for a wide class of subcritical operators defined on a straight tube. We also discuss some applications of this result, such as Sobolev inequalities and spectral estimates for Schrödinger operators \({-\Delta^D_\Omega-V}\) .

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ancona, A.: Principe de Harnack à la frontière et théorème de Fatou pour un opérateur elliptique dans un domaine lipschitzien. Ann. Inst. Fourier (Grenoble) 28, 169–213 (1978)

    Google Scholar 

  2. Ancona A.: First eigenvalues and comparison of Green’s functions for elliptic operators on manifolds or domains. J. Anal. Math. 72, 45–92 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  3. Bishara, F.: Numerical Simulation of Fully Developed Laminar Flow and Heat Transfer in Isothermal Helically Twisted Tubes with Elliptical Cross-Sections. M.Sc. thesis, University of Cincinnati, (2010)

  4. Caffarelli L., Fabes E., Mortola S., Salsa S.: Boundary behavior of nonnegative solutions of elliptic operators in divergence form. Indiana Univ. Math. J. 30, 621–640 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  5. Ciesielski Z.: Heat conduction and the principle of not feeling the boundary. Bul. Acad. Polon. Sci. Ser. Sci. Math. Astronom. Phys. 15, 435–440 (1966)

    MathSciNet  Google Scholar 

  6. Collet P., Martínez S., San Martín J.: Asymptotic behaviour of a Brownian motion on exterior domains. Probab. Theory Relat. Fields 116, 303–316 (2000)

    Article  MATH  Google Scholar 

  7. Coulhon T.: Ultracontractivity and Nash Type Inequalities. J. Funct. Anal. 141, 510–530 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  8. Davies E.B.: The equivalence of certain heat kernel and Green function bounds. J. Funct. Anal. 71, 88–103 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  9. Davies, E.B.: Heat Kernels and Spectral Theory. Cambridge University Press, Cambridge, 1989

  10. Davies E.B.: Non-Gaussian aspects of heat kernel behaviour. J. Lond. Math. Soc. 55, 105–125 (1997)

    Article  MATH  Google Scholar 

  11. Davies E.B., Simon B.: Ultracontractivity and the Heat Kernel for Schrödinger operators and Dirichlet Laplacians. J. Funct. Anal. 59, 335–395 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  12. DeBlassie D.: The change of a long lifetime for Brownian motion in a horn-shaped domain. Electron. Commun. Probab. 12, 134–139 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  13. Dunne G., Jaffe R.L.: Bound states in twisted Aharonov–Bohm tubes. Ann. Phys. (N.Y.) 223, 180–196 (1993)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  14. Ekholm, T., Kovařík, H., Krejčiřík, D.: A Hardy inequality in twisted waveguides. Arch. Ration. Mech. Anal. 188, 245–264 (2008)

    Google Scholar 

  15. Exner, P., Weidl, T.: Lieb-Thirring inequalities on trapped modes in quantum wires. Proceedings of the XIII International Congress on Mathematical Physics, London, 2000, 437–443. International Press of Boston, Boston, (2001)

  16. Fraas, M., Krejčiřík, D., Pinchover, Y.: On some strong ratio limit theorems for heat kernels. Disc. Contin. Dyn. Syst. 28, 495–509 (2010)

    Google Scholar 

  17. Frank, R.L., Lieb, E.H., Seiringer, R.: Equivalence of Sobolev inequalities and Lieb–Thirring inequalities. XVIth International Congress on Mathematical Physics, Proceedings of the ICMP held in Prague, August 3–8, 2009, 523–535. (Ed. P. Exner) World Scientific, Singapore, (2010)

  18. Fukushima, M., Oshima, Y., Takeda, M.: Dirichlet Forms and Symmetric Markov Processes. de Gruyter Studies in Mathematics, Vol. 19. de Gruyter, Berlin, 1994

  19. Grigor’yan A.: Gaussian upper bounds for the heat kernels on arbitrary manifolds. J. Differ. Geom. 45, 33–52 (1997)

    MathSciNet  Google Scholar 

  20. Grigor’yan A.: Heat kernels on weighted manifolds and applications. Contemp. Math. 398, 93–191 (2006)

    Article  MathSciNet  Google Scholar 

  21. Grigor’yan A., Saloff-Coste L.: Dirichlet heat kernel in the exterior of a compact set. Commun. Pure Appl. Math. 55, 93–133 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  22. Harris, J.G.: Rayleigh wave propagation in curved waveguides. Wave Motion 36 (2002), 425–441.

    Google Scholar 

  23. Hueber, H., Sieveking, M.: Uniform bounds for quotients of Green functions on C 1,1-domains. Ann. Inst. Fourier (Grenoble) 32, 105–117 (1982)

    Google Scholar 

  24. Kac, M.: On some connections between probability theory and partial differential equations. Proceedings of the 2nd Berkeley Symposium on Probability Statistics, 189–215. University of California Press, Berkeley, (1951)

  25. Krejčiřík, D., Zuazua, E.: The Hardy inequality and the heat equation in twisted tubes. J. Math. Pures Appl. 94, 277–303 (2010)

    Google Scholar 

  26. Krejčiřík, D., Zuazua, E.: The asymptotic behaviour of the heat equation in a twisted Dirichlet–Neumann waveguide. J. Differ. Equ. 250, 2334–2346 (2011)

    Google Scholar 

  27. Kuchment, P., Ong, B.-S.: On guided electromagnetic waves in photonic crystal waveguides. Operator Theory and its Applications, 99–108. Amer. Math. Soc. Transl. Ser., Vol. 2, 231, Amer. Math. Soc., Providence, RI (2010)

  28. Lieb E.: Bounds on the eigenvalues of the Laplace and Schrödinger operators. Bull. Am. Math. Soc. 82, 751–753 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  29. Marner W.J., Bergles A.E.: Augmentation of highly viscous laminar heat transfer inside tubes with constant wall temperature. Exp. Therm. Fluid Sci. 2, 252–267 (1989)

    Article  Google Scholar 

  30. Murata M.: Positive solutions and large time behaviors of Schrödinger semigroups, Simon’s problem. J. Funct. Anal. 56, 300–310 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  31. Murata, M.: Structure of positive solutions to \({(-\Delta+V)u = 0}\) in \({{\mathbb{R}}^n}\) . Duke Math. J. 53, 869–943 (1986)

  32. Murata M.: On construction of Martin boundaries for second order elliptic equations. Publ. Res. Inst. Math. Sci. 26, 585–627 (1990)

    Article  MathSciNet  Google Scholar 

  33. Pinchover Y.: On positive solutions of second-order elliptic equations, stability results and classification. Duke Math. J. 57, 955–980 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  34. Pinchover, Y.: On Davies’ conjecture and strong ratio limit properties for the heat kernel. Potential Theory in Matsue, Proceedings of the International Workshop on Potential Theory, 2004, 339–352. Advanced Studies in Pure Mathematics, Vol. 44. (Ed. H. Aikawa, et al.) Mathematical Society of Japan, Tokyo, 2006

  35. Pinchover Y., Tintarev K.: A ground state alternative for singular Schrödinger operators. J. Funct. Anal. 230, 65–77 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  36. Pinchover, Y., Tintarev, K.: On the Hardy-Sobolev-Maz’ya inequality and its generalizations. In: Sobolev spaces in mathematics. I, 281–297. Int. Math. Ser. (N. Y.), 8, Springer, New York, (2009)

  37. Pipkin A. C., Rivlin R. S.: Electrical conduction in a stretched and twisted tube. J. Math. Phys. 2, 636–638 (1961)

    Article  MATH  ADS  Google Scholar 

  38. Pozrikidis C.: Stokes flow through a twisted tube. J. Fluid Mech. 567, 261–280 (2006)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  39. Reed, M., Simon, B.: Methods of Modern Mathematical Physics IV: Analysis of Operators. Academic Press, San Diego (1978)

  40. Rozenblum G.V., Solomyak M.Z.: The Cwikel-Lieb-Rozenblum estimates for generators of positive semigroups and semigroups dominated by positive semigroups. St. Petersburg Math. J. 9, 1195–1211 (1998)

    MathSciNet  Google Scholar 

  41. Rosenbljum, G.V., Solomyak, M.Z.: Counting Schrödinger bound states: semiclassic and beyond. Sobolev Spaces in Mathematics. II. Int. Math. Ser. (N. Y.), Vol. 9, 329–353. Springer, New York, (2009)

  42. Varadhan S.R.S.: On the behavior of the fundamental solution of the heat equation with variable coefficients. Commun. Pure Appl. Math. 20, 431–455 (1967)

    Article  MATH  MathSciNet  Google Scholar 

  43. Zhang Q.S.: The boundary behavior of heat kernels of Dirichlet Laplacians. J. Differ. Equ. 182, 416–430 (2002)

    Article  MATH  ADS  Google Scholar 

  44. Zhang Q.S.: The global behavior of heat kernels in exterior domains. J. Funct. Anal. 200, 160–176 (2003)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabriele Grillo.

Additional information

Communicated by The Editors

G.G. has been partially supported by the MIUR-PRIN 2009 grant “Metodi di viscosità, geometrici e di controllo per modelli diffusivi nonlineari”. H.K. has been partially supported by the MIUR-PRIN 2010-11 grant for the project “Calcolo delle Variazioni”. Y.P. acknowledges the support of the Israel Science Foundation (Grants No. 963/11) founded by the Israel Academy of Sciences and Humanities. G.G. and H.K. acknowledge the support of Gruppo Nazionale per l’AnalisiMatematica, la Probabilità e le loro Applicazioni (GNAMPA) of the Istituto Nazionale di Alta Matematica (INdAM).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grillo, G., Kovařík, H. & Pinchover, Y. Sharp Two-Sided Heat Kernel Estimates of Twisted Tubes and Applications. Arch Rational Mech Anal 213, 215–243 (2014). https://doi.org/10.1007/s00205-014-0723-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-014-0723-3

Keywords

Navigation