Skip to main content
Log in

The Stabilizing Effect of Spacetime Expansion on Relativistic Fluids With Sharp Results for the Radiation Equation of State

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

In this article, we study the 1 + 3-dimensional relativistic Euler equations on a pre-specified conformally flat expanding spacetime background with spatial slices that are diffeomorphic to \({\mathbb{R}^3.}\) We assume that the fluid verifies the equation of state \({p = c^{2}_{s} \rho,}\) where \({0 \leq c_{s} \leq \sqrt{1/3}}\) is the speed of sound. We also assume that the reciprocal of the scale factor associated with the expanding spacetime metric verifies a c s −dependent time-integrability condition. Under these assumptions, we use the vector field energy method to prove that an explicit family of physically motivated, spatially homogeneous, and spatially isotropic fluid solutions are globally future-stable under small perturbations of their initial conditions. The explicit solutions corresponding to each scale factor are analogs of the well-known spatially flat Friedmann–Lemaître–Robertson–Walker family. Our nonlinear analysis, which exploits dissipative terms generated by the expansion, shows that the perturbed solutions exist for all future times and remain close to the explicit solutions. This work is an extension of previous results, which showed that an analogous stability result holds when the spacetime is exponentially expanding. In the case of the radiation equation of state p = (1/3)ρ, we also show that if the time-integrability condition for the reciprocal of the scale factor fails to hold, then the explicit fluid solutions are unstable. More precisely, we show the existence of an open family of initial data such that (i) it contains arbitrarily small smooth perturbations of the explicit solutions’ data and (ii) the corresponding perturbed solutions necessarily form shocks in finite time. The shock formation proof is based on the conformal invariance of the relativistic Euler equations when \({c^{2}_{s} = 1/3,}\) which allows for a reduction to a well-known result of Christodoulou.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Christodoulou, D.: The Action Principle and Partial Differential Equations, Annals of Mathematics Studies, vol. 146. Princeton University Press, Princeton, 2000

  2. Christodoulou, D.: The Formation of Shocks in three-Dimensional Fluids. EMS Monographs in Mathematics. European Mathematical Society (EMS), Zürich, 2007. doi:10.4171/031

  3. Efstathiou, G., Bond, J.R., White, S.D.M.: COBE background radiation anisotropies and large-scale structure in the universe. R. Astron. Soc. Mon. Not. 258, 1P–6P (1992)

    Google Scholar 

  4. Friedrich, H.: Conformal Einstein evolution. In: The conformal structure of space-time, Lecture Notes in Phys, vol. 604, pp. 1–50. Springer, Berlin, 2002. doi:10.1007/3-540-45818-2_1

  5. Hörmander, L.: Lectures on Nonlinear Hyperbolic Differential Equations, Mathématiques and Applications (Berlin) [Mathematics and Applications], vol. 26. Springer, Berlin, 1997

  6. Hsiao, L.: Quasilinear Hyperbolic Systems and Dissipative Mechanisms. World Scientific Publishing Co. Inc., River Edge, 1997

  7. Klainerman, S., Majda, A.: Singular limits of quasilinear hyperbolic systems with large parameters and the incompressible limit of compressible fluids. Comm. Pure Appl. Math. 34(4), 481–524 (1981). doi:10.1002/cpa.3160340405

  8. Lübbe, C., Valiente Kroon, J.A.: A conformal approach for the analysis of the non-linear stability of pure radiation cosmologies. Ann. Physics. 328, 1–25 (2013). doi:10.1016/j.aop.2012.10.011

  9. Nishida, T.: Nonlinear hyperbolic equations and related topics in fluid dynamics. Département de Mathématique, Université de Paris-Sud, Orsay (1978). Publications Mathématiques d’Orsay, No. 78-02

  10. Noether, E.: Invariant variation problems. Transport Theory Statist. Phys. 1(3), 186–207 (1971). (Translated from the German. Nachr. Akad. Wiss. Göttingen Math. Phys. Kl. II 1918, 235–257)

  11. Perlmutter, S., Riess, A.: Cosmological parameters from supernovae: two groups’ results agree. In: Caldwell, D.O. (ed.) COSMO-98, American Institute of Physics Conference Series, vol. 478, pp. 129–142, 1999. doi:10.1063/1.59382

  12. Rendall, A.D.: Theorems on existence and global dynamics for the Einstein equations. Living Rev. Relativ. 5, 2002–6 (electronic), 62 (2002)

    Google Scholar 

  13. Rendall, A.D.: Accelerated cosmological expansion due to a scalar field whose potential has a positive lower bound. Classical Quantum Gravity 21(9), 2445–2454 (2004). doi:10.1088/0264-9381/21/9/018

  14. Rendall, A.D.: Asymptotics of solutions of the Einstein equations with positive cosmological constant. Ann. Henri Poincaré 5(6), 1041–1064 (2004). doi:10.1007/s00023-004-0189-1

  15. Rendall, A.D.: Intermediate inflation and the slow-roll approximation. Classical Quantum Gravity 22(9), 1655–1666 (2005). doi:10.1088/0264-9381/22/9/013

  16. Rendall, A.D.: Mathematical properties of cosmological models with accelerated expansion. In: Analytical and Numerical Approaches to Mathematical Relativity, Lecture Notes in Physics, vol. 692, pp. 141–155. Springer, Berlin, 2006. doi:10.1007/3-540-33484-X_7

  17. Riess, A.G., Filippenko, A.V., Challis, P., Clocchiattia, A., Diercks, A., Garnavich, P.M., Gilliland, R.L., Hogan, C.J., Jha, S., Kirshner, R.P., Leibundgut, B., Phillips, M.M., Reiss, D., Schmidt, B.P., Schommer, R.A., Smith, C.R., Spyromilio, J., Stubbs, C., Suntzeff, N.B., Tonry, J.: Observational evidence from supernovae for an accelerating universe and a cosmological constant (1998) URL:http://arxiv.org/abs/astro-ph/9805201

  18. Ringström, H.: Future stability of the Einstein-non-linear scalar field system. Invent. Math. 173(1), 123–208 (2008). doi:10.1007/s00222-008-0117-y

  19. Ringström, H.: Power law inflation. Comm. Math. Phys. 290(1), 155–218 (2009). doi:10.1007/s00220-009-0812-6

  20. Rodnianski, I., Speck, J.: The nonlinear future stability of the FLRW family of solutions to the irrotational Euler–Einstein system with a positive cosmological constant. To appear in JEMS. arXiv preprint: http://arxiv.org/abs/0911.5501pp. 1–70 (2009)

  21. Sideris, T.C.: Formation of singularities in three-dimensional compressible fluids. Comm. Math. Phys. 101(4), 475–485 (1985). URL:http://projecteuclid.org/getRecord?id=euclid.cmp/1104114244

  22. Speck, J.: The non-relativistic limit of the Euler–Nordström system with cosmological constant. Rev. Math. Phys. 21(7), 821–876 (2009). doi:10.1142/S0129055X09003748

    Google Scholar 

  23. Speck, J.: Well-posedness for the Euler–Nordström system with cosmological constant. J. Hyperbolic Differ. Equ. 6(2), 313–358 (2009). doi:10.1142/S0219891609001885

    Google Scholar 

  24. Speck, J.: The nonlinear future stability of the FLRW family of solutions to the Euler-Einstein system with a positive cosmological constant. Selecta Mathematica 18(3), 633–715 (2012). doi:10.1007/s00029-012-0090-6

  25. Speck, J., Strain, R.M.: Hilbert expansion from the Boltzmann equation to relativistic fluids. Comm. Math. Phys. 304(1), 229–280 (2011). doi:10.1007/s00220-011-1207-z

    Google Scholar 

  26. Wald, R.M.: General Relativity. University of Chicago Press, Chicago, 1984

  27. Weinberg, S.: Cosmology. Oxford University Press, Oxford, 2008

  28. Wu, K.K.S., Lahav, O., Rees, M.J.: The large-scale smoothness of the universe. Nature 397, 225 (1999). doi:10.1038/16637

    Google Scholar 

  29. Yadav, J., Bharadwaj, S., Pandey, B., Seshadri, T.R.: Testing homogeneity on large scales in the Sloan digital sky survey data release one. Mon. Not. R. Astron. Soc. 364(2), 601–606 (2005). doi:10.1111/j.1365-2966.2005.09578.x

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jared Speck.

Additional information

Communicated by C. Dafermos

The author gratefully acknowledges support from NSF Grant # DMS-1162211, from a Solomon Buchsbaum Grant administered by the Massachusetts Institute of Technology, and from an NSF All-Institutes Postdoctoral Fellowship administered by the Mathematical Sciences Research Institute through its core Grant DMS-0441170.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Speck, J. The Stabilizing Effect of Spacetime Expansion on Relativistic Fluids With Sharp Results for the Radiation Equation of State. Arch Rational Mech Anal 210, 535–579 (2013). https://doi.org/10.1007/s00205-013-0655-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-013-0655-3

Keywords

Navigation