Skip to main content

Advertisement

Log in

Phase Transformations in Electrically Conductive Ferromagnetic Shape-Memory Alloys, Their Thermodynamics and Analysis

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

We derive a thermodynamically consistent general continuum-mechanical model describing mutually coupled martensitic and ferro/paramagnetic phase transformations in electrically-conductive magnetostrictive materials such as NiMnGa. We use small-strain and eddy-current approximations, yet large velocities and electric current injected through the boundary are allowed. Fully nonlinear coupling of magneto-mechanical and thermal effects is considered. The existence of energy-preserving weak solutions is proved by showing convergence of time-discrete approximations constructed by a carefully designed semi-implicit regularized scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Albanese R., Rubinacci G.: Formulation of the eddy-current problem. IEE Proc. A 137, 16–22 (1990)

    Google Scholar 

  2. Arndt M., Griebel M., Novák V., Roubíček T., Šittner P.: Martensitic/austenitic transformation in NiMnGa: simulation and experimental approaches. Int. J. Plasticity 22, 1943–1961 (2006)

    Article  MATH  Google Scholar 

  3. Arndt M., Griebel M., Roubíček T.: Modelling and numerical simulation of martensitic transformation in shape memory alloys. Cont. Mech. Thermodyn. 15, 463–485 (2003)

    Article  MATH  Google Scholar 

  4. Ball J.M., James R.D.: Proposed experimental tests of a theory of fine microstructure and the two-well problem. Phil. Trans. R. Soc. Lond. A 338, 389–450 (1992)

    Article  ADS  MATH  Google Scholar 

  5. Bertotti G.: Hysteresis in Magnetism. Academic Press, San Diego, 1998

  6. Bertsch M., Podio-Guidugli P., Valente V.: On the dynamics of deformable ferromagnets. I. Global weak solutions for soft ferromagnets at rest. Ann. Mat. Pura Appl. 179, 331–360 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  7. Boccardo L., Dall’aglio A., Gallouët T., Orsina L.: Nonlinear parabolic equations with measure data. J. Funct. Anal. 147, 237–258 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  8. Boccardo L., Gallouët T.: Non-linear elliptic and parabolic equations involving measure data. J. Funct. Anal. 87, 149–69 (1989)

    Google Scholar 

  9. Bossavit A.: Computational Electromagnetism. Academic Press, San Diego, 1998

  10. Brézis H.: Équations et inéquations non-linéaires dans les espaces vectoriel en dualité. Ann. Inst. Fourier 18, 115–176 (1968)

    Article  MATH  Google Scholar 

  11. Brown W.F.: Micromagnetics. Krieger Publishing Co., New York, 1963

  12. Duvaut G., Lions J.L.: Les Inéquations en Méchanique et en Physique. Dunod, Paris, 1972

  13. DeSimone A.: Energy minimizers for large ferromagnetic bodies. Arch. Rational Mech. Anal. 125, 99–143 (1996)

    MathSciNet  ADS  Google Scholar 

  14. DeSimone A., Kohn R., Müller S., Otto F.: Two-dimensional modelling of soft ferromagnetic films. Proc. R. Soc. Lond. A 457, 2983–2991 (2001)

    Article  ADS  MATH  Google Scholar 

  15. DeSimone A., Podio-Guidugli P.: On the continuum theory of deformable ferromagnetic solids. Arch. Rational Mech. Anal. 136, 201–233 (1996)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  16. Faulkner M.G., Amalraj J.J., Bhattacharyya A.: Experimental determination of thermal and electrical properties of NiTi shape memory wires. Smart Mater. Struct. 9, 632–639 (2000)

    Article  ADS  Google Scholar 

  17. Gilbert T.: A phenomenological theory of damping in ferromagnetic materials. IEEE Trans. Mag. 40, 3443–3449 (2004)

    Article  ADS  Google Scholar 

  18. Giusti E.: Direct Methods in the Calculus of Variations. World Scientific, New Yersey, 2003

  19. Gori F., Carnevale D., Doro Altan A., Nicosia S., Pennestrì E.: A new hysteretic behavior in the electrical resistivity of flexinol shape memory alloys versus temperature. Int. J. Thermophys. 27, 866–879 (2006)

    Article  ADS  Google Scholar 

  20. Gurtin M.E., Murdoch A.I.: A continuum theory of elastic material surfaces. Arch. Rational Mech. Anal. 57, 291–323 (1974)

    MathSciNet  ADS  Google Scholar 

  21. He Z., Gall K.R., Brinson L.C.: Use of electric reistance testing to redefine the transformation kinetics and phase diagram for shape-memory alloys. Metall. Mater. Trans. A 37A, 579–581 (2006)

    Google Scholar 

  22. Heczko O., Seiner H., Sedlák P., Kopeček J., Landa M.: Anomalous lattice softening of Ni2MnGa austenite due to magnetoelastic coupling. J. Appl. Phys. 111, 07A929 (2012)

    Google Scholar 

  23. James R.D., Wuttig M.: Magnetostriction of Martensite. Philos. Mag. A 77, 1273–1299 (1998)

    Article  ADS  Google Scholar 

  24. Krevet B., Kohl M.: Thermodynamic Modelling of Ferromagnetic Shape Memory Actuators. Mat. Sci. Forum 635, 175–180 (2010)

    Article  Google Scholar 

  25. Landis C.M.: A continuum thermodynamics formulation for micro-magneto-mechanics with applications to ferromagnetic shape memory alloys. J. Mech. Phys. Solids 56, 3059–3076 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  26. Melcher A., Nestler B.: A phase-field model for magnetic shape memory alloys: Microstructure evolution under the influence of elastic and magnetic forces. Proc. Appl. Math. Mech. 8, 10745–10746 (2008)

    Article  Google Scholar 

  27. Murray S.J., Marioni M., Tello P.G., Allen S.M., O’Handley R.C.: Giant magnetic-field-induced strain in Ni-Mn-Ga crystals: experimental results and modeling. J. Magn. Magn. Mater. 226–230 945–947 (2001)

    Google Scholar 

  28. Novák V., Šittner P., Dayananda G.N., Braz-Fernandes F.M., Mahesh K.K.: Electric resistance variation of NiTi shape memory alloy wires in thermomechanical tests: experiments and simulation. Mater. Sci. Eng. A 481–482, 127–133 (2008)

    Google Scholar 

  29. Onsager L.: Reciprocal relations in irreversible processes. Phys. Rev. II 37, 405–426 (1931)

    Article  ADS  Google Scholar 

  30. Onsager L.: Reciprocal relations in irreversible processes. Phys. Rev. II 38 2265–2279 (1931)

    Google Scholar 

  31. Öttinger H.C.: Beyond Equilibrium Thermodynamics. Wiley, Hoboken, NJ, 2002

  32. Plecháč P., Roubíček T.: Visco-elasto-plastic model for martensitic phase transformation in shape-memory alloys. Math. Method Appl. Sci. 25, 1281–1298 (2002)

    Article  MATH  Google Scholar 

  33. Podio-Guidugli P.: Contact interactions, stress, and material symmetry, for nonsimple elastic materials. Theor. Appl. Mech. 28–29, 261–276 (2002)

    Google Scholar 

  34. Podio-Guidugli P., Vianello M.: Hypertractions and hyperstresses convey the same mechanical information. Cont. Mech. Thermodyn. 22, 163–176 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  35. Podio-Guidugli P., Roubíček T., Tomassetti G.: A thermodynamically-consistent theory of the ferro/paramagnetic transition. Arch. Rational Mech. Anal. 198, 1057–1094 (2010)

    Article  ADS  MATH  Google Scholar 

  36. Rajagopal K.R., Roubíček T.: On the effect of dissipation in shape-memory alloys. Nonlinear Anal. Real World Appl. 4, 581–597 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  37. Roubíček T.: Nonlinear Partial Differential Equations with Applications. Birkhäuser, Basel, 2005 (2nd ed. 2012).

  38. Roubíček T.: Nonlinearly coupled thermo-visco-elasticity. Nonlinear Differ. Equ. Appl. (2013, to appear)

  39. Roubíček T., Tomassetti G.: Thermodynamics of shape-memory alloys under electric current. Zeit. Angew. Math. Phys. 61, 1–20 (2010)

    Article  MATH  Google Scholar 

  40. Roubíček T., Tomassetti G.: Ferromagnets with eddy currents and pinning effects: their thermodynamics and analysis. Math. Mod. Meth. Appl. Sci. 21, 29–55 (2011)

    Article  MATH  Google Scholar 

  41. Roubíček T., Tomassetti G., Zanini C.: The Gilbert equation with dry-friction-type damping. J. Math. Anal. Appl. 355, 453–468 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  42. Seiner H., Bicanová L., Sedlák P., Landa M., Heller L., Aaltio I.: Magneto-elastic attenuation in austenitic phase of Ni-Mn-Ga alloy investigated by ultrasonic methods. Mat. Sci. Eng. A, 521–522, 205–208 (2009)

    Google Scholar 

  43. Seiner H., Heczko O., Sedlák P., Bodnárová L., Novotný M., Kopeček J., Landa M.: Combined effect of structural softening and magneto-elastic coupling on elastic coefficients of Ni Mn Ga austenite. J. Alloys Compounds (2012, to appear)

  44. Šilhavý M.: Phase transitions in non-simple bodies. Arch. Rational Mech. Anal. 88 (1985), 135–161

    Google Scholar 

  45. Sozinov A., Likhachev A.A., Lanska N., Ullakko K.: Giant magnetic-field-induced strain in NiMnGa seven-layered martensitic phase. Appl. Phys. Lett. 10, 1746–1748 (2002)

    Article  ADS  Google Scholar 

  46. Tickle R., James R.D.: Magnetic and magnetomechanical properties of Ni2MnGa. J. Magn. Magn. Mater. 195, 627–638 (1999)

    Article  ADS  Google Scholar 

  47. Toupin R.A.: Elastic materials with couple stresses. Arch. Rational Mech. Anal. 11, 385–414 (1962)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  48. Uchil J., Mahesh K.K., Ganesh Kumara K.: Electrical resistivity and strain recovery studies on the effect of thermal cycling under constant strass on R-phase in NiTi shape memory alloy. Phys. B 324, 419–428 (2002)

    Article  ADS  Google Scholar 

  49. Visintin A.: Modified Landau–Lifshitz equation for ferromagnetism. Phys. B 233, 365–369 (1997)

    Article  MathSciNet  ADS  Google Scholar 

  50. Worgull J., Petti E., Trivisonno J.: Behavior of the elastic properties near an intermediate phase transition in Ni2 MnGa. Phys. Rev. B 54, 15695–15699 (1996)

    Article  ADS  Google Scholar 

  51. Wu X.D., Fan Y.Z., Wu J.S.: A study on the variations of the eletrical resistance for NiTi shape memory alloy wires during the thermomechanical loading. Mater. Design 21, 511–515 (2000)

    Article  Google Scholar 

  52. Zayak A.T., Buchelnikov V.D., Entel P.: A Ginzburg–Landau theory for Ni-Mn-Ga. Phase Trans. 75, 243–256 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomáš Roubíček.

Additional information

Communicated by F. Otto

This work was supported by the Italian INdAM-GNFM, and also in part by the grants 201/09/0917, 201/10/0357, and 201/12/0671 (GA ČR), LC 06052 (MŠMT ČR), by the institutional support RVO: 61388998 (ČR), as well as the CENTEM project no. CZ.1.05/21.00/03.0088 (within OP RDI) at New technologies research centre (ZČU, Plzeň).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Roubíček, T., Tomassetti, G. Phase Transformations in Electrically Conductive Ferromagnetic Shape-Memory Alloys, Their Thermodynamics and Analysis. Arch Rational Mech Anal 210, 1–43 (2013). https://doi.org/10.1007/s00205-013-0648-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-013-0648-2

Keywords

Navigation