Skip to main content
Log in

On the Convergence to Equilibrium for Degenerate Transport Problems

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

We give a counterexample which shows that the asymptotic rate of convergence to the equilibrium state for the transport equation, with a degenerate cross section and in the periodic setting, cannot be better than t −1/2 in the general case. We suggest, moreover, that the geometrical properties of the cross section are the key feature of the problem and impose, through the distribution of the forward exit time, the speed of convergence to the stationary state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aoki K., Golse F.: On the speed of approach to equilibrium for a collisionless gas. Kinet. Relat. Models 4(1), 87–107 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bourgain J., Golse F., Wennberg B.: On the distribution of free path lengths for the periodic Lorentz gas. Commun. Math. Phys. 190(3), 491–508 (1998)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  3. Desvillettes L., Salvarani F.: Asymptotic behavior of degenerate linear transport equations. Bull. Sci. Math. 133(8), 848–858 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  4. Desvillettes L., Villani C.: On the trend to global equilibrium in spatially inhomogeneous entropy-dissipating systems: the linear Fokker–Planck equation. Comm. Pure Appl. Math. 54(1), 1–42 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  5. Golse F.: On the periodic Lorentz gas and the Lorentz kinetic equation. Ann. Fac. Sci. Toulouse Math. 17(4), 735–749 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  6. Golse, F., Wennberg, B.: On the distribution of free path lengths for the periodic Lorentz gas. II. M2AN Math. Model. Numer. Anal. 34(6), 1151–1163 (2000)

  7. Mouhot C., Neumann L.: Quantitative perturbative study of convergence to equilibrium for collisional kinetic models in the torus. Nonlinearity 19(4), 969–998 (2006)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  8. Pazy, A.: Semigroups of Linear Operators and Applications to Partial Differential Equations, volume 44 of Applied Mathematical Sciences. Springer, New York (1983)

  9. Tsuji T., Aoki K.: On the periodic Lorentz gas and the Lorentz kinetic equation. J. Stat. Phys. 146, 620–645 (2012)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  10. Tsuji T., Aoki K., Golse F.: Relaxation of a free-molecular gas to equilibrium caused by interaction with vessel wall. J. Stat. Phys. 140(3), 518–543 (2010)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  11. Ukai S., Point N., Ghidouche H.: Sur la solution globale du problème mixte de l’équation de Boltzmann nonlinéaire. J. Math. Pures Appl. 57(3), 203–229 (1978)

    MathSciNet  MATH  Google Scholar 

  12. Villani, C.: Hypocoercive diffusion operators. In: International Congress of Mathematicians, vol. III, pp 473–498. Eur. Math. Soc., Zürich (2006)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Étienne Bernard.

Additional information

Communicated by L. Saint-Raymond

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bernard, É., Salvarani, F. On the Convergence to Equilibrium for Degenerate Transport Problems. Arch Rational Mech Anal 208, 977–984 (2013). https://doi.org/10.1007/s00205-012-0608-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-012-0608-2

Keywords

Navigation