Skip to main content
Log in

Existence and Stability of Compressible Current-Vortex Sheets in Three-Dimensional Magnetohydrodynamics

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

Compressible vortex sheets are fundamental waves, along with shocks and rarefaction waves, in entropy solutions to multidimensional hyperbolic systems of conservation laws. Understanding the behavior of compressible vortex sheets is an important step towards our full understanding of fluid motions and the behavior of entropy solutions. For the Euler equations in two-dimensional gas dynamics, the classical linearized stability analysis on compressible vortex sheets predicts stability when the Mach number \(M > \sqrt{2}\) and instability when \(M < \sqrt{2}\) ; and Artola and Majda’s analysis reveals that the nonlinear instability may occur if planar vortex sheets are perturbed by highly oscillatory waves even when \(M > \sqrt{2}\) . For the Euler equations in three dimensions, every compressible vortex sheet is violently unstable and this instability is the analogue of the Kelvin–Helmholtz instability for incompressible fluids. The purpose of this paper is to understand whether compressible vortex sheets in three dimensions, which are unstable in the regime of pure gas dynamics, become stable under the magnetic effect in three-dimensional magnetohydrodynamics (MHD). One of the main features is that the stability problem is equivalent to a free-boundary problem whose free boundary is a characteristic surface, which is more delicate than noncharacteristic free-boundary problems. Another feature is that the linearized problem for current-vortex sheets in MHD does not meet the uniform Kreiss–Lopatinskii condition. These features cause additional analytical difficulties and especially prevent a direct use of the standard Picard iteration to the nonlinear problem. In this paper, we develop a nonlinear approach to deal with these difficulties in three-dimensional MHD. We first carefully formulate the linearized problem for the current-vortex sheets to show rigorously that the magnetic effect makes the problem weakly stable and establish energy estimates, especially high-order energy estimates, in terms of the nonhomogeneous terms and variable coefficients. Then we exploit these results to develop a suitable iteration scheme of the Nash–Moser–Hörmander type to deal with the loss of the order of derivative in the nonlinear level and establish its convergence, which leads to the existence and stability of compressible current-vortex sheets, locally in time, in three-dimensional MHD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alinhac S. (1989) Existence d’ondes de raréfaction pour des systèmes quasi-linéaires hyperboliques multidimensionnels. Commun. Partial Differ. Eqs. 14, 173–230

    Article  MATH  MathSciNet  Google Scholar 

  2. Artola M., Majda A. (1987) Nonlinear development of instability in supersonic vortex sheets, I: The basic kink modes. Phys. D. 28, 253–281

    Article  MATH  MathSciNet  Google Scholar 

  3. Artola M., Majda A. (1989) Nonlinear development of instability in supersonic vortex sheets. II SIAM J. Appl. Math. 49, 1310–1349

    MATH  ADS  MathSciNet  Google Scholar 

  4. Artola M., Majda A. (1989) Nonlinear kind modes for supersonic vortex sheets. Phys. Fluids 1A: 583–596

    ADS  MathSciNet  Google Scholar 

  5. Begelman M.C., Blandford R.D., Rees M.J. (1984) Theory of exagalactic radio sources. Rev. Mod. Phys. 56, 255–351

    Article  ADS  Google Scholar 

  6. Blokhin, A., Trakhinin, Y.: Stability of strong discontinuities in fluids and MHD, In: Handbook of Mathematical Fluid Dynamics. Vol. I, pp. 545–652, North-Holland, Amsterdam, 2002

  7. Chen G.-Q., Feldman M. (2003) Multidimensional transonic shocks and free boundary problems for nonlinear equations of mixed type. J. Am. Math. Soc. 3, 461–494

    Article  MathSciNet  Google Scholar 

  8. Chen S. (1982) On the initial-boundary value problems for quasilinear symmetric hyperbolic systems with characteristic boundary (in Chinese). Chinese Anal. Math. 3, 222–232

    Google Scholar 

  9. Coulombel J.F., Secchi P. (2004) Stability of compressible vortex sheet in two space dimensions. Indiana Univ. Math. J. 53, 941–1012

    Article  MATH  MathSciNet  Google Scholar 

  10. Coulombel, J.F., Secchi, P.: Nonlinear compressible vortex sheets in two space dimensions. Preprint, 2006

  11. Courant R., Friedrichs K. (1948) Supersonic Flow and Shock Waves. Springer, New York

    MATH  Google Scholar 

  12. Francheteau J., Métivier G. (2000) Existence de chocs faibles pour des systèmes quasi-linéaires hyperboliques multidimensionnels. Astérisque 268, 1–198

    Google Scholar 

  13. Friedrichs K.O., Lax P.D. (1965) Boundary value problems for first order operators. Comm. Pure Appl. Math. 18, 355–388

    Article  MATH  MathSciNet  Google Scholar 

  14. Glimm, J., Majda, A.: Multidimensional Hyperbolic Problems and Computations, The IMA Volumes in Mathematics and its Applications, Vol. 29. Springer, New York, 1991

  15. Guès O. (1990) Problème mixte hyperbolique quasi-linéaire caractéristique. Commun. Partial Differ. Eqs. 15, 595–645

    Article  MATH  Google Scholar 

  16. Guès O., Métivier G., Williams M., Zumbrun K. (2005) Existence and stability of multidimensional shock fronts in the vanishing viscosity limit. Arch. Ration. Mech. Anal. 175, 151–244

    Article  MATH  MathSciNet  Google Scholar 

  17. Hörmander L. (1982) The boundary problems of physical geodesy. Arch. Ration. Mech. Anal. 62, 1–52

    Google Scholar 

  18. Kreiss H.-O. (1970) Initial boundary value problems of hyperbolic systems. Comm. Pure Appl. Math. 23, 277–296

    Article  MathSciNet  Google Scholar 

  19. Lions J.L., Magenes E. (1972) Non-Homogeneous Boundary Value Problems and Applications, Vol. 1–3. Springer, New York

    Google Scholar 

  20. Majda A. (1984) Compressible Fluid Flow and Systems of Conservation Laws in Several Space Variables. Springer, New York

    MATH  Google Scholar 

  21. Métivier, G.: Stability of multimensioanl shocks. In: Advances in The Theory of Shock Waves, Vol. 47, pp. 25–103. PNDEA, Birkhäuser, Boston, 2001

  22. Miles J.W. (1957) On the reflection of sound at an interface of relative motion. J. Acoust. Soc. Am. 29, 226–228

    Article  MathSciNet  Google Scholar 

  23. Miles J.W. (1958) On the disturbed motion of a plane vortex sheet. J. Fluid Mech. 4, 538–552

    Article  MATH  ADS  MathSciNet  Google Scholar 

  24. Smart L.L., Norman M.L., Winkler K.A. (1984) Shocks, interfaces, and patterns in supersonic jets. Physica 12D: 83–106

    Google Scholar 

  25. Trakhinin Y. (2005) Existence of compressible current-vortex sheets: variable coefficients linear analysis. Arch. Ration. Mech. Anal. 177, 331–366

    Article  MATH  MathSciNet  Google Scholar 

  26. Van Dyke M. (1982) An Album of Fluid Motion. Parabolic, Stanford

    Google Scholar 

  27. von Neumann J. (1963) Collected Works, Vol 5. Pergamon, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gui-Qiang Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, GQ., Wang, YG. Existence and Stability of Compressible Current-Vortex Sheets in Three-Dimensional Magnetohydrodynamics. Arch Rational Mech Anal 187, 369–408 (2008). https://doi.org/10.1007/s00205-007-0070-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-007-0070-8

Keywords

Navigation