Skip to main content
Log in

S-(3-Aminobenzanthron-2-yl)cysteine in the globin of rats as a novel type of adduct and possible biomarker of exposure to 3-nitrobenzanthrone, a potent environmental carcinogen

  • Toxicokinetics and Metabolism
  • Published:
Archives of Toxicology Aims and scope Submit manuscript

An Erratum to this article was published on 20 May 2017

This article has been updated

Abstract

3-Nitrobenzanthrone (3-NBA), a potent environmental mutagen and carcinogen, is known to be activated in vivo to 3-benzanthronylnitrenium ion which forms both NH and C2-bound adducts with DNA and also reacts with glutathione giving rise to urinary 3-aminobenzanthron-2-ylmercapturic acid. In this study, acid hydrolysate of globin from rats dosed intraperitoneally with 3-NBA was analysed by HPLC/MS to identify a novel type of cysteine adduct, 3-aminobenzanthron-2-ylcysteine (3-ABA-Cys), confirmed using a synthesised standard. The 3-ABA-Cys levels in globin peaked after single 3-NBA doses of 1 and 2 mg/kg on day 2 to attain 0.25 and 0.49 nmol/g globin, respectively, thereafter declining slowly to 70–80% of their maximum values during 15 days. After dosing rats for three consecutive days with 1 mg 3-NBA/kg a significant cumulation of 3-ABA-Cys in globin was observed. 3-ABA-Cys was also found in the plasma hydrolysate. Herein, after dosing with 1 and 2 mg 3-NBA/kg the adduct levels peaked on day 1 at 0.15 and 0.51 nmol/ml plasma, respectively, thereafter declining rapidly to undetectable levels on day 15. In addition, sulphinamide adducts were also found in the exposed rats, measured indirectly as 3-aminobenzanthrone (3-ABA) split off from globin by mild acid hydrolysis. Levels of both types of adducts in the globin samples parallelled very well with 3-ABA/3-ABA-Cys ratio being around 1:8. In conclusion, 3-ABA-Cys is the first example of arylnitrenium-cysteine adduct in globin representing a new promising class of biomarkers to assess cumulative exposures to aromatic amines, nitroaromatics and heteroaromatic amines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Change history

  • 20 May 2017

    An erratum to this article has been published.

References

  • Arlt VM (2005) 3-Nitrobenzanthrone, a potential human cancer hazard in diesel exhaust and urban air pollution: review of the evidence. Mutagenesis 20:399–410. doi:10.1093/mutage/gei057

    Article  CAS  PubMed  Google Scholar 

  • Arlt VM, Glatt H, Muckel E, Pabel U, Sorg BL, Seidel A, Frank H, Schmeiser HH, Phillips DH (2003a) Activation of 3-nitrobenzanthrone and its metabolites by human acetyltransferases, sulfotransferases and cytochrome P450 expressed in Chinese hamster V79 cells. Int J Cancer 105:583–592. doi:10.1002/ijc.11143

    Article  CAS  PubMed  Google Scholar 

  • Arlt VM, Stiborová M, Hewer A, Schmeiser HH, Phillips DH (2003b) Human enzymes involved in the metabolic activation of the environmental contaminant 3-nitrobenzanthrone: evidence for reductive activation by human NADPH:cytochrome P450 reductase. Cancer Res 63:2752–2761

    CAS  PubMed  Google Scholar 

  • Arlt VM, Stiborová M, Henderson CJ, Osborne MR, Bieler CA, Frei E, Martínek V, Sopko B, Wolf CR, Schmeiser HH, Phillips DH (2005) The environmental pollutant and potent mutagen 3-nitrobenzanthrone forms DNA adducts after reduction by NAD(P)H:quinone oxidoreductase and conjugation by acetyltransferases and sulfotransferases in human hepatic cytosols. Cancer Res 65:2644–2652. doi:10.1158/0008-5472.CAN-04-3544

    Article  CAS  PubMed  Google Scholar 

  • Arlt VM, Schmeiser HH, Osborne MR, Kawanishi M, Kanno T, Yagi T, Phillips DH, Takamura-Enya T (2006) Identification of three major DNA adducts formed by the carcinogenic air pollutant 3-nitrobenzanthrone in rat lung at the C8 and N2 position of guanine and at the N6 position of adenine. Int J Cancer 118:2139–2146. doi:10.1002/ijc.21622

    Article  CAS  PubMed  Google Scholar 

  • Barber BJ, Schultz TJ, Randlett DL (1990) Comparative analysis of protein content in rat mesenteric tissue, peritoneal fluid, and plasma. Am J Physiol 258:G714–G718

    CAS  PubMed  Google Scholar 

  • Berlin NI, Berk PD (1975) The biological life of the red cell. In: Surgenor DM (ed) The red blood cell, 2nd edn, vol 2. Academic Press, New York, pp 957–1019

    Chapter  Google Scholar 

  • Boyland E, Manson D, Nery R (1963) Mercapturic acids as metabolites of aniline and 2-naphthylamine. Biochem J 86:263–271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Enya T, Suzuki H, Watanabe T, Hirayama T, Hisamatsu Y (1997) 3-Nitrobenzanthrone, a powerful bacterial mutagen and suspected human carcinogen found in diesel exhausts and airborne particulates. Environ Sci Technol 31:2772–2776. doi:10.1021/es961067i

    Article  CAS  Google Scholar 

  • Eyer P (1994) Reactions of oxidatively activated arylamines with thiols: reaction mechanisms and biological implications. An overview. Environ Health Perspect 102(Suppl. 6):123–132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Galleman D, Eyer P (1994) Additional pathways of S-conjugate formation during the interaction of thiols with nitrosoarenes bearing π-donating substituents. Environ Health Perspect 102(Suppl. 6):137–142

    Google Scholar 

  • Jeffay H, Winzler RJ (1958) The effect of dietary protein on the turnover of rat serum protein. J Biol Chem 231:111–116

    CAS  PubMed  Google Scholar 

  • Kazanis S, McClelland RA (1992) Electrophilic intermediate in the reaction of glutathione and nitrosoarenes. J Am Chem Soc 114:3052–3059. doi:10.1021/ja00034a043

    Article  CAS  Google Scholar 

  • Kelava T, Ćavar I, Čulo F (2011) Biological actions of drug solvents. Period Biol 113(ISSN: 0031–5362):311–320

    Google Scholar 

  • Linhart I, Mráz J, Hanzlíková I, Šilhánková A, Frantík E, Himl M (2012) Carcinogenic 3-nitrobenzanthrone but not 2-nitrobenzanthrone is metabolised to an unusual mercapturic acid in rats. Toxicol Lett 208:246–253. doi:10.1016/j.toxlet.2011.11.017

    Article  CAS  PubMed  Google Scholar 

  • Morgan EH (1966) Transferrin and albumin distribution and turnover in the rat. Am J Physiol 211:1486–1494

    CAS  PubMed  Google Scholar 

  • Mráz J, Hanzlíková I, Moulisová A, Dušková Š, Hejl K, Bednářová A, Dabrowská L, Linhart I (2016) Hydrolytic cleavage products of globin adducts in urine as possible biomarkers of cumulative dose. Proof of concept using styrene oxide as a model adduct-forming compound. Chem Res Toxicol 29:676–686. doi:10.1021/acs.chemrestox.5b00518

    Article  PubMed  Google Scholar 

  • Mulder GJ, Kadlubar FF, Mayes JB, Hinson JA (1984) Reaction of mutagenic phenacetin metabolites with glutathione and DNA. Possible implications for toxicity. Mol Pharmacol 26:342–347

    CAS  PubMed  Google Scholar 

  • Nagy E, Zeisig M, Kawamura K, Hisamatsu Y, Sugeta A, Adachi S, Moller L (2005) DNA adduct and tumor formations in rats after intratracheal administration of the urban air pollutant 3-nitrobenzanthrone. Carcinogenesis 26:1821–1828. doi:10.1093/carcin/bgi141

    Article  CAS  PubMed  Google Scholar 

  • Neumann H-G, van Dorp C, Zwirner-Baier I (1995) The implications for risk assessment of measuring the relative contribution to exposure from occupation, environment and lifestyle: hemoglobin adducts from amino- and nitro-arenes. Toxicol Lett 82/83:771–778

    Article  CAS  Google Scholar 

  • Novak M, Chakraborti M (2011) N-Arylhydroxylamines and chemical carcinogenicity. In: Rappoport Z, Liebman JF (eds) The chemistry of hydroxylamines, oximes and hydroxamic acids, vol 2. John Wiley & Sons, New York, pp 577–621

    Google Scholar 

  • Osborne MR, Arlt VM, Kliem C, Hull WE, Mirza A, Bieler CA, Schmeiser HH, Phillips DH (2005) Synthesis, characterization, and 32P-postlabeling analysis of DNA adducts derived from the environmental contaminant 3-nitrobenzanthrone. Chem Res Toxicol 18:1056–1070. doi:10.1021/tx0500474

    Article  CAS  PubMed  Google Scholar 

  • Peng L, Turesky RJ (2013) Capturing labile sulfenamide and sulfinamide serum albumin adducts of carcinogenic arylamines by chemical oxidation. Anal Chem 85:1065–1072. doi:10.1021/ac3028273

    Article  CAS  PubMed  Google Scholar 

  • Sabbioni G (1994) Hemoglobin binding of arylamines and nitroarenes: molecular dosimetry and quantitative structure-activity relationships. Environ Health Perspect 102(Suppl. 6):61–67

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Safronov AI, Traven VF (1993) Synthesis of some imidazobenzanthrones. Zh Org Khim 29:1853–1958 (in Russian)

    CAS  Google Scholar 

  • Stiborová M, Dračínská H, Hájková J, Kadeřábková P, Frei E, Schmeiser HH, Souček P, Phillips DH, Arlt VM (2006) The environmental pollutant and carcinogen 3-nitrobenzanthrone and its human metabolite 3-aminobenzanthrone are potent inducers of rat hepatic cytochromes P450 1A1 and-1A2 and NAD(P)H:quinone oxidoreductase. Drug Metab Dispos 34:1398–1405. doi:10.1124/dmd.106.009373

    Article  PubMed  Google Scholar 

  • Stiborová M, Martínek V, Svobodová M, Šístková J, Dvořák Z, Ulrichová J, Šimánek V, Frei E, Schmeiser HH, Phillips DH, Arlt VM (2010) Mechanisms of the different DNA adduct forming potentials of the urban air pollutants 2-nitrobenzanthrone and carcinogenic 3-nitrobenzanthrone. Chem Res Toxicol 23:1192–1201. doi:10.1021/tx100052d

    Article  PubMed  Google Scholar 

  • Straube E, Völkel W, Bringmann G, Dekant W (2005) Reaction of nitroso derivatives of dinitropyrenes with sulfhydryl groups of peptides and hemoglobin in vitro and in rats. Xenobiotica 35:1147–1164. doi:10.1080/00498250500342605

    Article  CAS  PubMed  Google Scholar 

  • Takamura-Enya T, Kawanishi M, Takashi Y, Hisamatsu Y (2007) Structural identification of DNA adducts derived from 3-nitrobenzanthrone, a potent carcinogen present in the atmosphere. Chem Asian J 2:1174–1185. doi:10.1002/asia.200700061

    Article  CAS  PubMed  Google Scholar 

  • Törnqvist M, Fred C, Haglund J, Helleberg H, Paulsson B, Rydberg P (2002) Protein adducts: quantitative and qualitative aspects of their formation, analysis and applications. J Chromatogr B 778:279–308

    Article  Google Scholar 

Download references

Acknowledgements

The study was supported by Ministry of Health of the Czech Republic-DRO (National Institute of Public Health-NIPH, IN 75010330) and University of Chemistry and Technology, Prague, Program of long-term development. Purchase of the principal analytical instrument, Orbitrap Q Exactive mass spectrometer, was supported by European Regional Development Fund (ERDF), Integrated Operational Programme Reg. No. CZ.1.06/3.2.01/11.08435. Skilled technical assistance of M. Tvrdíková, L. Dabrowská, H. Chrástecká, and R. Vajtrová is greatly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Igor Linhart.

Additional information

An erratum to this article is available at https://doi.org/10.1007/s00204-017-1991-0.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Linhart, I., Hanzlíková, I., Mráz, J. et al. S-(3-Aminobenzanthron-2-yl)cysteine in the globin of rats as a novel type of adduct and possible biomarker of exposure to 3-nitrobenzanthrone, a potent environmental carcinogen. Arch Toxicol 91, 3317–3325 (2017). https://doi.org/10.1007/s00204-017-1943-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00204-017-1943-8

Keywords

Navigation