Skip to main content

Advertisement

Log in

State of the art in non-animal approaches for skin sensitization testing: from individual test methods towards testing strategies

  • Review Article
  • Published:
Archives of Toxicology Aims and scope Submit manuscript

Abstract

The hazard assessment of skin sensitizers relies mainly on animal testing, but much progress is made in the development, validation and regulatory acceptance and implementation of non-animal predictive approaches. In this review, we provide an update on the available computational tools and animal-free test methods for the prediction of skin sensitization hazard. These individual test methods address mostly one mechanistic step of the process of skin sensitization induction. The adverse outcome pathway (AOP) for skin sensitization describes the key events (KEs) that lead to skin sensitization. In our review, we have clustered the available test methods according to the KE they inform: the molecular initiating event (MIE/KE1)—protein binding, KE2—keratinocyte activation, KE3—dendritic cell activation and KE4—T cell activation and proliferation. In recent years, most progress has been made in the development and validation of in vitro assays that address KE2 and KE3. No standardized in vitro assays for T cell activation are available; thus, KE4 cannot be measured in vitro. Three non-animal test methods, addressing either the MIE, KE2 or KE3, are accepted as OECD test guidelines, and this has accelerated the development of integrated or defined approaches for testing and assessment (e.g. testing strategies). The majority of these approaches are mechanism-based, since they combine results from multiple test methods and/or computational tools that address different KEs of the AOP to estimate skin sensitization potential and sometimes potency. Other approaches are based on statistical tools. Until now, eleven different testing strategies have been published, the majority using the same individual information sources. Our review shows that some of the defined approaches to testing and assessment are able to accurately predict skin sensitization hazard, sometimes even more accurate than the currently used animal test. A few defined approaches are developed to provide an estimate of the potency sub-category of a skin sensitizer as well, but these approaches need further independent evaluation with a new dataset of chemicals. To conclude, this update shows that the field of non-animal approaches for skin sensitization has evolved greatly in recent years and that it is possible to predict skin sensitization hazard without animal testing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Adler S, Basketter D, Creton S et al (2011) Alternative (non-animal) methods for cosmetics testing: current status and future prospects—2010. Arch Toxicol 85(5):367–485

    Article  CAS  PubMed  Google Scholar 

  • Albrekt A-S, Johansson H, Börje A, Borrebaeck C, Lindstedt M (2014) Skin sensitizers differentially regulate signaling pathways in MUTZ-3 cells in relation to their individual potency. BMC Pharmacol Toxicol 15(1):1–13

    Article  CAS  Google Scholar 

  • Alépée N, Piroird C, Aujoulat M et al (2015) Prospective multicentre study of the U-SENS test method for skin sensitization testing. Toxicol in Vitro 30((1, Part B)):373–382

    Article  PubMed  CAS  Google Scholar 

  • Alves VM, Muratov E, Fourches D et al (2015) Predicting chemically-induced skin reactions. Part II: QSAR models of skin permeability and the relationships between skin permeability and skin sensitization. Toxicol Appl Pharm 284(2):273–280

    Article  CAS  Google Scholar 

  • Api AM, Basketter DA, Cadby PA et al (2008) Dermal sensitization quantitative risk assessment (QRA) for fragrance ingredients. Regul Toxicol Pharmacol 52(1):3–23

    Article  CAS  PubMed  Google Scholar 

  • Aptula AO, Roberts DW (2006) Mechanistic applicability domains for nonanimal-based prediction of toxicological end points: general principles and application to reactive toxicity. Chem Res Toxicol 19(8):1097–1105

    Article  CAS  PubMed  Google Scholar 

  • Ashikaga T, Sakaguchi H, Sono S et al (2010) A comparative evaluation of in vitro skin sensitisation tests: the human cell-line activation test (h-CLAT) versus the local lymph node assay (LLNA). Altern Lab Anim 38(4):275–284

    CAS  PubMed  Google Scholar 

  • Avonto C, Chittiboyina AG, Rua D, Khan IA (2015) A fluorescence high throughput screening method for the detection of reactive electrophiles as potential skin sensitizers. Toxicol Appl Pharmacol 289(2):177–184

    Article  CAS  PubMed  Google Scholar 

  • Barratt MD, Basketter DA, Chamberlain M, Admans GD, Langowski JJ (1994a) An expert system rulebase for identifying contact allergens. Toxicol In Vitro 8(5):1053–1060

    Article  CAS  PubMed  Google Scholar 

  • Barratt MD, Basketter DA, Chamberlain M, Payne MP, Admans GD, Langowski JJ (1994b) Development of an expert system rulebase for identifying contact allergens. Toxicol In Vitro 8(4):837–839

    Article  CAS  PubMed  Google Scholar 

  • Basketter DA, Andersen KE, Liden C et al (2005) Evaluation of the skin sensitizing potency of chemicals by using the existing methods and considerations of relevance for elicitation. Contact Dermat 52(1):39–43

    Article  CAS  Google Scholar 

  • Basketter D, Pease C, Kasting G et al (2007) Skin sensitisation and epidermal disposition: the relevance of epidermal disposition for sensitisation hazard identification and risk assessment. The report and recommendations of ECVAM workshop 59. Altern Lab Anim 35(1):137–154

    CAS  PubMed  Google Scholar 

  • Basketter D, Ashikaga T, Casati S et al (2015) Alternatives for skin sensitisation: hazard identification and potency categorisation: Report from an EPAA/CEFIC LRI/Cosmetics Europe cross sector workshop, ECHA Helsinki, April 23rd and 24th 2015. Regul Toxicol Pharmacol 73(2):660–666

    Article  PubMed  Google Scholar 

  • Bauch C, Kolle SN, Fabian E et al (2011) Intralaboratory validation of four in vitro assays for the prediction of the skin sensitizing potential of chemicals. Toxicol In Vitro 25(6):1162–1168

    Article  CAS  PubMed  Google Scholar 

  • Bauch C, Kolle SN, Ramirez T et al (2012) Putting the parts together: combining in vitro methods to test for skin sensitizing potentials. Regul Toxicol Pharmacol 63(3):489–504

    Article  CAS  PubMed  Google Scholar 

  • Casati S, Aeby P, Basketter DA et al (2005) Dendritic cells as a tool for the predictive identification of skin sensitisation hazard. Altern Lab Anim 33(1):47–62

    CAS  PubMed  Google Scholar 

  • Chaudhry Q, Piclin N, Cotterill J et al (2010) Global QSAR models of skin sensitisers for regulatory purposes. Chem Cent J 4(Suppl 1):S5

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Coleman KP, McNamara LR, Grailer TP et al (2015) Evaluation of an in vitro human dermal sensitization test for use with medical device extracts. Appl In Vitro Toxicol 1(2):13

    Article  Google Scholar 

  • Corsini E, Mitjans M, Galbiati V, Lucchi L, Galli CL, Marinovich M (2009) Use of IL-18 production in a human keratinocyte cell line to discriminate contact sensitizers from irritants and low molecular weight respiratory allergens. Toxicol In Vitro 23(5):789–796

    Article  CAS  PubMed  Google Scholar 

  • Corsini E, Galbiati V, Mitjans M, Galli CL, Marinovich M (2013) NCTC 2544 and IL-18 production: a tool for the identification of contact allergens. Toxicology In Vitro 27(3):1127–1134

    Article  CAS  PubMed  Google Scholar 

  • Cottrez F, Boitel E, Auriault C, Aeby P, Groux H (2015) Genes specifically modulated in sensitized skins allow the detection of sensitizers in a reconstructed human skin model. Development of the SENS-IS assay. Toxicol In Vitro 29(4):787–802

    Article  CAS  PubMed  Google Scholar 

  • Cottrez F, Boitel E, Ourlin J-C et al (2016) SENS-IS, a 3D reconstituted epidermis based model for quantifying chemical sensitization potency: reproducibility and predictivity results from an inter-laboratory study. Toxicol In Vitro 32:248–260

    Article  CAS  PubMed  Google Scholar 

  • Dancik Y, Miller MA, Jaworska J, Kasting GB (2013) Design and performance of a spreadsheet-based model for estimating bioavailability of chemicals from dermal exposure. Adv Drug Deliv Rev 65(2):221–236

    Article  CAS  PubMed  Google Scholar 

  • Davies M, Pendlington RU, Page L et al (2011) Determining epidermal disposition kinetics for use in an integrated nonanimal approach to skin sensitization risk assessment. Toxicol Sci 119(2):308–318

    Article  CAS  PubMed  Google Scholar 

  • Dietz L, Kinzebach S, Ohnesorge S et al (2013) Proteomic allergen–peptide/protein interaction assay for the identification of human skin sensitizers. Toxicol In Vitro 27(3):1157–1162

    Article  CAS  PubMed  Google Scholar 

  • Dimitrov SD, Low LK, Patlewicz GY et al (2005) Skin sensitization: modeling based on skin metabolism simulation and formation of protein conjugates. Int J Toxicol 24(4):189–204

    Article  CAS  PubMed  Google Scholar 

  • Dos Santos GG, Spiekstra SW, Sampat-Sardjoepersad SC, Reinders J, Scheper RJ, Gibbs S (2011) A potential in vitro epidermal equivalent assay to determine sensitizer potency. Toxicol In Vitro 25(1):347–357

    Article  PubMed  CAS  Google Scholar 

  • Dumont C, Prieto P, Asturiol D, Worth A (2015) Review of the availability of in vitro and in silico methods for assessing dermal bioavailability. Appl In Vitro Toxicol 1(2):147–164

    Article  Google Scholar 

  • Dumont C, Barroso J, Matys I, Worth A, Casati S (2016) Analysis of the Local Lymph Node Assay (LLNA) variability for assessing the prediction of skin sensitisation potential and potency of chemicals with non-animal approaches. Toxicol In Vitro 34:220–228

    Article  CAS  PubMed  Google Scholar 

  • Enoch SJ, Madden JC, Cronin MT (2008) Identification of mechanisms of toxic action for skin sensitisation using a SMARTS pattern based approach. SAR QSAR Environ Res 19(5–6):555–578

    Article  CAS  PubMed  Google Scholar 

  • Enslein K, Gombar VK, Blake BW et al (1997) A quantitative structure-toxicity relationships model for the dermal sensitization guinea pig maximization assay. Food Chem Toxicol 35(10–11):1091–1098

    Article  CAS  PubMed  Google Scholar 

  • EURL-ECVAM (2013a) EURL ECVAM recommendation on the Direct Peptide Reactivity Assay (DRPA) for skin sensitisation testing European Commission Joint Research Centre. Institute for Health and Consumer Protection. European Union Reference Laboratory for Alternatives to Animal Testing (EURL ECVAM)

  • EURL-ECVAM (2013b) EURL ECVAM recommendation on the Keratinosens™ assay for skin sensitisation testing European Commission Joint Research Centre. Institute for Health and Consumer Protection. European Union Reference Laboratory for Alternatives to Animal Testing (EURL ECVAM)

  • EURL-ECVAM (2014) EURL ECVAM recommendation on the Keratinosens™ assay for skin sensitisation testing. European Commission Joint Research Centre. Institute for Health and Consumer Protection. European Union Reference Laboratory for Alternatives to Animal Testing (EURL ECVAM)

  • EURL-ECVAM (2015a) EURL ECVAM Recommendation on the human Cell Line Activation Test (h-CLAT) for skin sensitisation testing. European Commission, Joint Research Centre, Institute for Health and Consumer Protection

  • EURL-ECVAM (2015b) EURL ECVAM Status Report on the Development, Validation and Regulatory Acceptance of Alternative Methods and Approaches. European Commission, Joint Research Centre, Institute for Health and Consumer Protection

  • EURL-ECVAM (2015c) EURL ECVAM status report on the development, validation and regulatory acceptance of alternative methods and approaches (2015) European Commission, Joint Research Centre, Institute for Health and Consumer Protection

  • Frombach J, Sonnenburg A, Krapohl B-D, Zuberbier T, Stahlmann R, Schreiner M (2016) A novel method to generate monocyte-derived dendritic cells during coculture with HaCaT facilitates detection of weak contact allergens in cosmetics. Arch Toxicol. doi:10.1007/s00204-016-1722-y

    Google Scholar 

  • Galbiati V, Mitjans M, Lucchi L et al (2011) Further development of the NCTC 2544 IL-18 assay to identify in vitro contact allergens. Toxicol In Vitro 25(3):724–732

    Article  CAS  PubMed  Google Scholar 

  • Galvão dos Santos G, Reinders J, Ouwehand K, Rustemeyer T, Scheper RJ, Gibbs S (2009) Progress on the development of human in vitro dendritic cell based assays for assessment of the sensitizing potential of a compound. Toxicol Appl Pharmacol 236(3):372–382

    Article  PubMed  CAS  Google Scholar 

  • Gealy R, Graham C, Sussman NB, Macina OT, Rosenkranz HS, Karol MH (1996) Evaluating clinical case report data for SAR modeling of allergic contact dermatitis. Hum Exp Toxicol 15(6):489–493

    Article  CAS  PubMed  Google Scholar 

  • Gerberick GF, Vassallo JD, Bailey RE, Chaney JG, Morrall SW, Lepoittevin JP (2004) Development of a peptide reactivity assay for screening contact allergens. Toxicol Sci 81(2):332–343

    Article  CAS  PubMed  Google Scholar 

  • Gerberick GF, Vassallo JD, Foertsch LM, Price BB, Chaney JG, Lepoittevin JP (2007) Quantification of chemical peptide reactivity for screening contact allergens: a classification tree model approach. Toxicol Sci 97(2):417–427

    Article  CAS  PubMed  Google Scholar 

  • Gerberick GF, Troutman JA, Foertsch LM et al (2009) Investigation of peptide reactivity of pro-hapten skin sensitizers using a peroxidase-peroxide oxidation system. Toxicol Sci 112(1):164–174

    Article  CAS  PubMed  Google Scholar 

  • Gibbs S, Corsini E, Spiekstra SW et al (2013) An epidermal equivalent assay for identification and ranking potency of contact sensitizers. Toxicol Appl Pharmacol 272(2):529–541

    Article  CAS  PubMed  Google Scholar 

  • Griem P, Goebel C, Scheffler H (2003) Proposal for a risk assessment methodology for skin sensitization based on sensitization potency data. Regul Toxicol Pharmacol 38(3):269–290

    Article  CAS  PubMed  Google Scholar 

  • Hartung T, Luechtefeld T, Maertens A, Kleensang A (2013) Integrated testing strategies for safety assessments. ALTEX 30(1):3–18

    Article  PubMed  PubMed Central  Google Scholar 

  • Hirota M, Suzuki M, Hagino S et al (2009) Modification of cell-surface thiols elicits activation of human monocytic cell line THP-1: possible involvement in effect of haptens 2,4-dinitrochlorobenzene and nickel sulfate. J Toxicol Sci 34(2):139–150

    Article  CAS  PubMed  Google Scholar 

  • Hoffmann S (2015) LLNA variability: an essential ingredient for a comprehensive assessment of non-animal skin sensitization test methods and strategies. ALTEX 32(4):379–383

    PubMed  Google Scholar 

  • Hooyberghs J, Schoeters E, Lambrechts N et al (2008) A cell-based in vitro alternative to identify skin sensitizers by gene expression. Toxicol Appl Pharmacol 231(1):103–111

    Article  CAS  PubMed  Google Scholar 

  • Ibrahim R, Nitsche JM, Kasting GB (2012) Dermal clearance model for epidermal bioavailability calculations. J Pharm Sci 101(6):2094–2108

    Article  CAS  PubMed  Google Scholar 

  • Jaworska J, Hoffmann S (2010) Integrated Testing Strategy (ITS)—opportunities to better use existing data and guide future testing in toxicology. ALTEX 27(4):231–242

    PubMed  Google Scholar 

  • Jaworska J, Harol A, Kern PS, Gerberick F (2011) Integrating non-animal test information into an adaptive testing strategy—skin sensitization proof of concept case. ALTEX 28(3):211–225

    Article  PubMed  Google Scholar 

  • Jaworska J, Dancik Y, Kern P, Gerberick F, Natsch A (2013) Bayesian integrated testing strategy to assess skin sensitization potency: from theory to practice. J Appl Toxicol 33(11):1353–1364

    CAS  PubMed  Google Scholar 

  • Jaworska JS, Natsch A, Ryan C, Strickland J, Ashikaga T, Miyazawa M (2015) Bayesian integrated testing strategy (ITS) for skin sensitization potency assessment: a decision support system for quantitative weight of evidence and adaptive testing strategy. Arch Toxicol 89(12):2355–2383

    Article  CAS  PubMed  Google Scholar 

  • Johansson H, Lindstedt M, Albrekt AS, Borrebaeck CA (2011) A genomic biomarker signature can predict skin sensitizers using a cell-based in vitro alternative to animal tests. BMC Genomics 12:399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johansson H, Albrekt AS, Borrebaeck CA, Lindstedt M (2012) The GARD assay for assessment of chemical skin sensitizers. Toxicol In Vitro 27(3):1163–1169

    Article  PubMed  CAS  Google Scholar 

  • Johansson H, Rydnert F, Kuhnl J, Schepky A, Borrebaeck C, Lindstedt M (2014) Genomic allergen rapid detection in-house validation—a proof of concept. Toxicol Sci 139(2):362–370

    Article  CAS  PubMed  Google Scholar 

  • Johnson R, Macina OT, Graham C, Rosenkranz HS, Cass GR, Karol MH (1997) Prioritizing testing of organic compounds detected as gas phase air pollutants: structure-activity study for human contact allergens. Environ Health Perspect 105(9):986–992

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kagatani S, Sasaki Y, Hirota M et al (2010) Oxidation of cell surface thiol groups by contact sensitizers triggers the maturation of dendritic cells. J Invest Dermatol 130(1):175–183

    Article  CAS  PubMed  Google Scholar 

  • Karlberg AT, Bergstrom MA, Borje A, Luthman K, Nilsson JL (2008) Allergic contact dermatitis—formation, structural requirements, and reactivity of skin sensitizers. Chem Res Toxicol 21(1):53–69

    Article  PubMed  Google Scholar 

  • Kimber I, Basketter DA, Gerberick GF, Ryan CA, Dearman RJ (2011) Chemical allergy: translating biology into hazard characterization. Toxicol Sci 120(suppl 1):S238–S268

    Article  CAS  PubMed  Google Scholar 

  • Klopman G, Ivanov J, Saiakhov R, Chakravarti S (2005) MC4PC—an artificial intelligence approach to the discovery of structure toxic activity relationships (STAR). In: Helma C (ed) Predictive Toxicology. CRC Press, Boca Raton, FL, pp 423–457

    Google Scholar 

  • Lambrechts N, Vanheel H, Hooyberghs J et al (2010a) Gene markers in dendritic cells unravel pieces of the skin sensitization puzzle. Toxicol Lett 196(2):95–103

    Article  CAS  PubMed  Google Scholar 

  • Lambrechts N, Vanheel H, Nelissen I et al (2010b) Assessment of chemical skin sensitizing potency by an in vitro assay based on human dendritic cells. Toxicol Sci 116(1):122–129

    Article  CAS  PubMed  Google Scholar 

  • Lambrechts N, Nelissen I, Van Tendeloo V et al (2011) Functionality and specificity of gene markers for skin sensitization in dendritic cells. Toxicol Lett 203(2):106–110

    Article  CAS  PubMed  Google Scholar 

  • Langton K, Patlewicz GY, Long A, Marchant CA, Basketter DA (2006) Structure-activity relationships for skin sensitization: recent improvements to Derek for Windows. Contact Dermat 55(6):342–347

    Article  CAS  Google Scholar 

  • Luechtefeld T, Maertens A, McKim JM, Hartung T, Kleensang A, Sá-Rocha V (2015) Probabilistic hazard assessment for skin sensitization potency by dose–response modeling using feature elimination instead of quantitative structure–activity relationships. J Appl Toxicol 35(11):1361–1371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • MacKay C, Davies M, Summerfield V, Maxwell G (2013) From pathways to people: applying the adverse outcome pathway (AOP) for skin sensitization to risk assessment. ALTEX 30(4):473–486

    Article  PubMed  Google Scholar 

  • Macmillan DS, Canipa SJ, Chilton ML, Williams RV, Barber CG (2016) Predicting skin sensitisation using a decision tree integrated testing strategy with an in silico model and in chemico/in vitro assays. Regul Toxicol Pharmacol 76:30–38

    Article  CAS  PubMed  Google Scholar 

  • Martin SF, Esser PR, Schmucker S et al (2010) T-cell recognition of chemicals, protein allergens and drugs: towards the development of in vitro assays. Cell Mol Life Sci 67(24):4171–4184

    Article  CAS  PubMed  Google Scholar 

  • Martin SF, Esser PR, Weber FC et al (2011) Mechanisms of chemical-induced innate immunity in allergic contact dermatitis. Allergy 66(9):1152–1163

    Article  CAS  PubMed  Google Scholar 

  • Maxwell G, MacKay C, Cubberley R et al (2014) Applying the skin sensitisation adverse outcome pathway (AOP) to quantitative risk assessment. Toxicol In Vitro 28(1):8–12

    Article  CAS  PubMed  Google Scholar 

  • McKim JM, Keller DJ, Gorski JR (2010) A new in vitro method for identifying chemical sensitizers combining peptide binding with ARE/EpRE-mediated gene expression in human skin cells. Cutan Ocul Toxicol 29(3):171–192

    Article  CAS  PubMed  Google Scholar 

  • McKim JM, Jr., Keller DJ, Gorski JR (2012) An in vitro method for detecting chemical sensitization using human reconstructed skin models and its applicability to cosmetic, pharmaceutical, and medical device safety testing. Cutan Ocul Toxicol 31(4):292–305

    Article  CAS  PubMed  Google Scholar 

  • Mitragotri S, Anissimov YG, Bunge AL et al (2011) Mathematical models of skin permeability: an overview. Int J Pharm 418(1):115–129

    Article  CAS  PubMed  Google Scholar 

  • Natsch A (2010) The Nrf2-Keap1-ARE toxicity pathway as a cellular sensor for skin sensitizers—functional relevance and a hypothesis on innate reactions to skin sensitizers. Toxicol Sci 113(2):284–292

    Article  CAS  PubMed  Google Scholar 

  • Natsch A, Gfeller H (2008) LC-MS-based characterization of the peptide reactivity of chemicals to improve the in vitro prediction of the skin sensitization potential. Toxicol Sci 106(2):464–478

    Article  CAS  PubMed  Google Scholar 

  • Natsch A, Bauch C, Foertsch L et al (2011) The intra- and inter-laboratory reproducibility and predictivity of the KeratinoSens assay to predict skin sensitizers in vitro: results of a ring-study in five laboratories. Toxicol In Vitro 25(3):733–744

    Article  CAS  Google Scholar 

  • Natsch A, Ryan CA, Foertsch L et al (2013) A dataset on 145 chemicals tested in alternative assays for skin sensitization undergoing prevalidation. J Appl Toxicol JAT 33(11):1337–1352

    CAS  PubMed  Google Scholar 

  • Natsch A, Emter R, Gfeller H, Haupt T, Ellis G (2015) Predicting skin sensitizer potency based on in vitro data from keratinosens and kinetic peptide binding: global versus domain-based assessment. Toxicol Sci 143(2):319–332

    Article  CAS  PubMed  Google Scholar 

  • Nukada Y, Ashikaga T, Sakaguchi H et al (2011) Predictive performance for human skin sensitizing potential of the human cell line activation test (h-CLAT). Contact Dermat 65(6):343–353

    Article  CAS  Google Scholar 

  • Nukada Y, Miyazawa M, Kazutoshi S, Sakaguchi H, Nishiyama N (2013) Data integration of non-animal tests for the development of a test battery to predict the skin sensitizing potential and potency of chemicals. Toxicol In Vitro 27(2):609–618

    Article  CAS  PubMed  Google Scholar 

  • OECD (1992) OECD Guidelines for the testing of chemicals, section 4: health effects, Test No. 406 skin sensitization. OECD Publishing, Paris

  • OECD (2007) Guidance on grouping of chemicals OECD environmental health and safety publications, series on testing and assessment no 80. OECD Publishing, Paris

    Google Scholar 

  • OECD (2008) Workshop on integrated approaches to testing and assessment. In: Publishing O (ed) Series on testing and assessment no 88. OECD Publishing, Paris

    Google Scholar 

  • OECD (2010a) Guidelines for the testing of chemicals. Section 4: health effects. Test No. 429. Skin sensitization: local lymph node assay. OECD Publishing, Paris

    Google Scholar 

  • OECD (2010b) Guidelines for the testing of chemicals. Section 4: health effects. Test no. 442A skin sensitization: local lymph node assay: DA. OECD Publishing, Paris

    Book  Google Scholar 

  • OECD (2010c) OECD guidelines for the testing of chemicals. Section 4: health effects. Test no. 442B skin sensitization: local lymph node assay: BrdU-ELISA. OECD Publishing, Paris

    Google Scholar 

  • OECD (2012) The adverse outcome pathway for skin sensitisation initiated by covalent binding for proteins. Part 1. Scientific evidence OECD environment, health and safety publications series on testing and assessment, vol 168. OECD Publishing, Paris, pp 1–46

  • OECD (2014) Guidance on grouping of chemicals, 2nd Ed. Environment, health 22 and safety publications, series on testing and assessment no. 194 23 series on testing and assessment, vol ENV/JM/MONO(2014)4. OECD Publishing, Paris

  • OECD (2015a) OECD guidelines for the testing of chemicals, Section 4. Test No. 442C: in chemico skin sensitisation: Direct Peptide Reactivity Assay (DPRA). OECD Publishing, Paris

    Google Scholar 

  • OECD (2015b) OECD guidelines for the testing of chemicals, Section 4. Test No. 442D: in vitro skin sensitisation: ARE-Nrf2 Luciferase test method. OECD Publishing, Paris

    Google Scholar 

  • OECD (2015c) Test No. 442D: in vitro skin sensitisation: ARE-Nrf2 Luciferase test method. OECD Publishing, Paris

    Google Scholar 

  • OECD (2016a) Guidance document on the reporting of defined approaches and individual information sources to be used within Integrated Approaches to Testing and Assessment (IATA) for skin sensitisation In: OECD Environment HaSP (ed) Series on testing and assessment, vol ENV/JM/HA(2016)11. OECD Publishing, Paris

  • OECD (2016b) Guidance document on the reporting of defined approaches to be used within integrated approaches to testing and assessment In: OECD Environment HaSP (ed) Series on testing and assessment, vol ENV/JM/HA(2016)10. OECD Publishing, Paris

  • OECD (2016c) OECD Guidelines for the Testing of Chemicals, Section 4. Test No. 442E: in vitro skin sensitisation: human Cell Line Activation Test (h-CLAT) vol ENV/JM/WRPR(2016)19]. OECD Publishing, Paris

  • Patlewicz G, Kuseva C, Kesova A et al (2014) Towards AOP application–implementation of an integrated approach to testing and assessment (IATA) into a pipeline tool for skin sensitization. Regul Toxicol Pharmacol 69(3):529–545

    Article  CAS  PubMed  Google Scholar 

  • Pendlington RU, Minter HJ, Stupart L et al (2008) Development of a modified in vitro skin absorption method to study the epidermal/dermal disposition of a contact allergen in human skin. Cutan Ocul Toxicol 27(4):283–294

    Article  CAS  PubMed  Google Scholar 

  • Piroird C, Ovigne J-M, Rousset F et al (2015) The Myeloid U937 Skin Sensitization Test (U-SENS) addresses the activation of dendritic cell event in the adverse outcome pathway for skin sensitization. Toxicol In Vitro 29(5):901–916

    Article  CAS  PubMed  Google Scholar 

  • Pirone JR, Smith M, Kleinstreuer NC et al (2014) Open source software implementation of an integrated testing strategy for skin sensitization potency based on a Bayesian network. ALTEX 31(3):336–340

    Article  PubMed  Google Scholar 

  • Ramirez T, Mehling A, Kolle SN et al (2014) LuSens: a keratinocyte based ARE reporter gene assay for use in integrated testing strategies for skin sensitization hazard identification. Toxicol In Vitro 28(8):1482–1497

    Article  CAS  PubMed  Google Scholar 

  • Ramirez T, Stein N, Aumann A et al (2016) Intra- and inter-laboratory reproducibility and accuracy of the LuSens assay: a reporter gene-cell line to detect keratinocyte activation by skin sensitizers. Toxicol In Vitro 32:278–286

    Article  CAS  PubMed  Google Scholar 

  • Reuter H, Gerlach S, Spieker J et al (2015) Evaluation of an optimized protocol using human peripheral blood monocyte derived dendritic cells for the in vitro detection of sensitizers: results of a ring study in five laboratories. TiV 29(5):976–986

    CAS  Google Scholar 

  • Richter A, Schmucker SS, Esser PR et al (2013) Human T cell priming assay (hTCPA) for the identification of contact allergens based on naive T cells and DC—IFN-γ and TNF-α readout. Toxicol In Vitro 27(3):1180–1185

    Article  CAS  PubMed  Google Scholar 

  • Roberts DW, Aptula AO, Patlewicz G, Pease C (2008) Chemical reactivity indices and mechanism-based read-across for non-animal based assessment of skin sensitisation potential. J Appl Toxicol 28(4):443–454

    Article  CAS  PubMed  Google Scholar 

  • Rorije E, Aldenberg T, Buist H, Kroese D, Schuurmann G (2013) The OSIRIS weight of evidence approach: ITS for skin sensitisation. Regul Toxicol Pharmacol 67(2):146–156

    Article  PubMed  Google Scholar 

  • Rovida C, Alepee N, Api AM et al (2015) Integrated testing strategies (ITS) for safety assessment. ALTEX 32(1):25–40

    PubMed  Google Scholar 

  • Saito K, Nukada Y, Takenouchi O, Miyazawa M, Sakaguchi H, Nishiyama N (2013) Development of a new in vitro skin sensitization assay (Epidermal Sensitization Assay; EpiSensA) using reconstructed human epidermis. Toxicol In Vitro 27(8):2213–2224

    Article  CAS  PubMed  Google Scholar 

  • Sakaguchi H, Ashikaga T, Miyazawa M et al (2006) Development of an in vitro skin sensitization test using human cell lines; human Cell Line Activation Test (h-CLAT). II. An inter-laboratory study of the h-CLAT. Toxicol In Vitro 5:774–784

    Article  CAS  Google Scholar 

  • Sakaguchi H, Ryan C, Ovigne JM, Schroeder KR, Ashikaga T (2010) Predicting skin sensitization potential and inter-laboratory reproducibility of a human Cell Line Activation Test (h-CLAT) in the European Cosmetics Association (COLIPA) ring trials. Toxicol In Vitro 24(6):1810–1820

    Article  CAS  PubMed  Google Scholar 

  • Schneider K, Akkan Z (2004) Quantitative relationship between the local lymph node assay and human skin sensitization assays. Regul Toxicol Pharmacol 39(3):245–255

    Article  CAS  PubMed  Google Scholar 

  • Schreiner M, Peiser M, Briechle D, Stahlmann R, Zuberbier T, Wanner R (2007) A loose-fit coculture of activated keratinocytes and dendritic cell-related cells for prediction of sensitizing potential. Allergy 62(12):1419–1428

    Article  CAS  PubMed  Google Scholar 

  • Sonnenburg A, Schreiner M, Stahlmann R (2015) Assessment of the sensitizing potency of preservatives with chance of skin contact by the loose-fit coculture-based sensitization assay (LCSA). Arch Toxicol 89(12):2339–2344

    Article  CAS  PubMed  Google Scholar 

  • Strickland J, Zang Q, Kleinstreuer N et al (2016) Integrated decision strategies for skin sensitization hazard. J Appl Toxicol. doi:10.1002/jat.3281

    Google Scholar 

  • Suzuki M, Hirota M, Hagino S, Itagaki H, Aiba S (2009) Evaluation of changes of cell-surface thiols as a new biomarker for in vitro sensitization test. Toxicol In Vitro 23(4):687–696

    Article  CAS  PubMed  Google Scholar 

  • Takahashi T, Kimura Y, Saito R et al (2011) An in vitro test to screen skin sensitizers using a stable THP-1-derived IL-8 reporter cell line, THP-G8. Toxicol Sci 124(2):359–369

    Article  CAS  PubMed  Google Scholar 

  • Takenouchi O, Miyazawa M, Saito K, Ashikaga T, Sakaguchi H (2013) Predictive performance of the human Cell Line Activation Test (h-CLAT) for lipophilic chemicals with high octanol-water partition coefficients. J Toxicol Sci 38(4):599–609

    Article  CAS  PubMed  Google Scholar 

  • Takenouchi O, Fukui S, Okamoto K et al (2015) Test battery with the human cell line activation test, direct peptide reactivity assay and DEREK based on a 139 chemical data set for predicting skin sensitizing potential and potency of chemicals. J Appl Toxicol 35(11):1318–1332

    Article  CAS  PubMed  Google Scholar 

  • Teubner W, Mehling A, Schuster PX et al (2013) Computer models versus reality: how well do in silico models currently predict the sensitization potential of a substance. Regul Toxicol Pharmacol 67(3):468–485

    Article  CAS  PubMed  Google Scholar 

  • Teunis M, Corsini E, Smits M et al (2013) Transfer of a two-tiered keratinocyte assay: IL-18 production by NCTC2544 to determine the skin sensitizing capacity and epidermal equivalent assay to determine sensitizer potency. Toxicol In Vitro 27(3):1135–1150

    Article  CAS  PubMed  Google Scholar 

  • Tollefsen KE, Scholz S, Cronin MT et al (2014) Applying adverse outcome pathways (AOPs) to support integrated approaches to testing and assessment (IATA). Regul Toxicol Pharmacol 70(3):629–640

    Article  PubMed  Google Scholar 

  • Tsujita-Inoue K, Hirota M, Ashikaga T, Atobe T, Kouzuki H, Aiba S (2014) Skin sensitization risk assessment model using artificial neural network analysis of data from multiple in vitro assays. Toxicol In Vitro 28(4):626–639

    Article  CAS  PubMed  Google Scholar 

  • Urbisch D, Mehling A, Guth K et al (2015) Assessing skin sensitization hazard in mice and men using non-animal test methods. Regul Toxicol Pharmacol 71(2):337–351

    Article  CAS  PubMed  Google Scholar 

  • Van der Veen JW, Vandebriel R, Van Loveren H, Ezendam J (2011) Keratinocytes, innate immunity and allergic contact dermatitis—opportunities for the development of in vitro assays to predict the sensitizing potential of chemicals. In: Ro YS (ed) Contact dermatitis. Available from: http://www.intechopen.com/books/contact-dermatitis/keratinocytes-innate-immunity-and-allergic-contact-dermatitis-opportunities-for-the-development-of-i

  • Van der Veen JW, Pronk TE, van Loveren H, Ezendam J (2013) Applicability of a keratinocyte gene signature to predict skin sensitizing potential. Toxicol In Vitro 27(1):314–322

    Article  PubMed  CAS  Google Scholar 

  • Van der Veen JW, Rorije E, Emter R, Natsch A, van Loveren H, Ezendam J (2014a) Evaluating the performance of integrated approaches for hazard identification of skin sensitizing chemicals. Regul Toxicol Pharmacol 69(3):371–379

    Article  PubMed  CAS  Google Scholar 

  • Van der Veen JW, Soeteman-Hernandez LG, Ezendam J, Stierum R, Kuper FC, van Loveren H (2014b) Anchoring molecular mechanisms to the adverse outcome pathway for skin sensitization: analysis of existing data. Crit Rev Toxicol 44(7):590–599

    Article  PubMed  CAS  Google Scholar 

  • Van Och FM, Van Loveren H, Van Wolfswinkel JC, Machielsen AJ, Vandebriel RJ (2005) Assessment of potency of allergenic activity of low molecular weight compounds based on IL-1alpha and IL-18 production by a murine and human keratinocyte cell line. Toxicology 210(2–3):95–109

    PubMed  Google Scholar 

  • Vandebriel RJ, van Loveren H (2010) Non-animal sensitization testing: state-of-the-art. Crit Rev Toxicol 40(5):389–404

    Article  CAS  PubMed  Google Scholar 

  • Vocanson M, Achachi A, Mutez V et al (2014) Human T cell priming assay: depletion of peripheral blood lymphocytes in CD25+ cells improves the in vitro detectin of weak allergen-specific T cells. In: Martin SF (ed) T Lymphocytes as tools in diagnostics and immunotoxicology. Springer, Basel

    Google Scholar 

  • Yamamoto Y, Tahara H, Usami R et al (2015) A novel in chemico method to detect skin sensitizers in highly diluted reaction conditions. J Appl Toxicol 35(11):1348–1360

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We highly appreciate the critical comments and suggestions of Prof. Dr. Aldert Piersma of the RIVM. This review was written within the context of a research project funded by ZonMw (Grant No. 114022001; Systems toxicology supported data infrastructure for human risk assessment). In addition, the Dutch Ministries of Economic Affairs and of Health, Welfare and Sports are acknowledged for supporting this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Janine Ezendam.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ezendam, J., Braakhuis, H.M. & Vandebriel, R.J. State of the art in non-animal approaches for skin sensitization testing: from individual test methods towards testing strategies. Arch Toxicol 90, 2861–2883 (2016). https://doi.org/10.1007/s00204-016-1842-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00204-016-1842-4

Keywords

Navigation