Skip to main content

Advertisement

Log in

The colon carcinogen 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) is actively secreted in the distal colon of the rat: an integrated view on the role of PhIP transport and metabolism in PhIP-induced colon carcinogenesis

  • Genotoxicity and Carcinogenicity
  • Published:
Archives of Toxicology Aims and scope Submit manuscript

Abstract

Epidemiological studies show that a positive correlation exists between the consumption of strongly heated meat and fish and the development of colorectal tumours. In this context, it has been postulated that the uptake of toxic substances formed during meat and fish processing such as heterocyclic aromatic amines (HCAs) may be causally related to colon carcinogenesis. In a previous study, we have shown that 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP), the most abundantly formed HCA in the above-mentioned food items, is mainly absorbed in the small intestine (i.e. proximal jejunum) of the rat. In the present study, we analysed whether PhIP can actively be secreted by enterocytes in the rat proximal jejunum and distal colon. Unidirectional PhIP flux rates from the mucosal-to-the serosal compartment (J ms ) and in the opposite direction (J sm ) were examined in Ussing chambers with 14C-PhIP as radiotracer and in the absence of electrochemical gradients. Under these experimental conditions, significant negative net flux rates (J net  = J ms  − J sm ) can only be explained by an active secretion of PhIP into the luminal compartment, and such an effect was observed in the rat distal colon, but not in the proximal jejunum. Moreover, the data obtained suggest that the breast cancer resistance protein, the multidrug resistance protein 4 and P-glycoprotein are not involved in the active secretion of PhIP in the rat distal colon. The potential role of PhIP transport in colon carcinogenesis is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alexander J, Fossum BH, Holme JA (1994) Metabolism of the food mutagen 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) in isolated liver cells from guinea pig, hamster, mouse, and rat. Environ Health Perspect 102(Suppl 6):109–114

    Article  PubMed  CAS  Google Scholar 

  • Allen JD, van Loevezijn A, Lakhai JM, van der Valk M, van Tellingen O, Reid G, Schellens JH, Koomen GJ, Schinkel AH (2002) Potent and specific inhibition of the breast cancer resistance protein multidrug transporter in vitro and in mouse intestine by a novel analogue of fumitremorgin C. Mol Cancer Ther 1:417–425

    Article  PubMed  CAS  Google Scholar 

  • Bingham SA, Pignatelli B, Pollock JR, Ellul A, Malaveille C, Gross G, Runswick S, Cummings JH, O’Neill IK (1996) Does increased endogenous formation of N-nitroso compounds in the human colon explain the association between red meat and colon cancer? Carcinogenesis 17:515–523

    Article  PubMed  CAS  Google Scholar 

  • Bingham SA, Hughes R, Cross AJ (2002) Effect of white versus red meat on endogenous N-nitrosation in the human colon and further evidence of a dose response. J Nutr 132:3522S–3525S

    PubMed  CAS  Google Scholar 

  • Bleich A, Leonhard-Marek S, Beyerbach M, Breves G (2007) Characterisation of chloride currents across the proximal colon in CftrTgH(neoim)1Hgu congenic mice. J Comp Physiol B 177:61–73

    Article  PubMed  CAS  Google Scholar 

  • Chao A, Thun MJ, Connell CJ, McCullough ML, Jacobs EJ, Flanders WD, Rodriguez C, Sinha R, Calle EE (2005) Meat consumption and risk of colorectal cancer. JAMA 293:172–182

    Article  PubMed  CAS  Google Scholar 

  • Cross AJ, Pollock JR, Bingham SA (2003) Haem, not protein or inorganic iron, is responsible for endogenous intestinal N-nitrosation arising from red meat. Cancer Res 63:2358–2360

    PubMed  CAS  Google Scholar 

  • Cross AJ, Ferrucci LM, Risch A, Graubard RI, Ward MH, Park Y, Hollenbeck AR, Schatzkin A, Sinha R (2010) A large prospective study of meat consumption and colorectal cancer risk: an investigation of potential mechanisms underlying this association. Cancer Res 70:2406–2414

    Article  PubMed  CAS  Google Scholar 

  • Dietrich CG, de Waart DR, Ottenhoff R, Schoots IG, Elferink RP (2001a) Increased bioavailability of the food-derived carcinogen 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine in MRP2-deficient rats. Mol Pharmacol 59:974–980

    PubMed  CAS  Google Scholar 

  • Dietrich CG, de Waart DR, Ottenhoff R, Bootsma AH, van Gennip AH, Elferink RP (2001b) Mrp2-deficiency in the rat impairs biliary and intestinal excretion and influences metabolism and disposition of the food-derived carcinogen 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine. Carcinogenesis 22:805–811

    Article  PubMed  CAS  Google Scholar 

  • Dietrich CG, Vehr AK, Martin IV, Gassler N, Rath T, Roeb E, Schmitt J, Trautwein C, Geier A (2011) Downregulation of breast cancer resistance protein in colon adenomas reduces cellular xenobiotic resistance and leads to accumulation of a food-derived carcinogen. Int J Cancer 129:546–552

    Article  PubMed  CAS  Google Scholar 

  • Doi K, Wanibuchi H, Salim EI, Morimura K, Kinoshita A, Kudoh S, Hirata K, Yoshikawa J, Fukushima S (2005) Lack of large intestinal carcinogenicity of 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine at low doses in rats initiated with azoxymethane. Int J Cancer 115:870–878

    Article  PubMed  CAS  Google Scholar 

  • Dragsted LO, Frandsen H, Reistad R, Alexander J, Larsen JC (1995) DNA-binding and disposition of 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) in the rat. Carcinogenesis 16:2785–2793

    Article  PubMed  CAS  Google Scholar 

  • Frandsen H, Grivas S, Andersson R, Dragsted L, Larsen JC (1992) Reaction of the N 2-acetoxy derivative of 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) with 2′-deoxyguanosine and DNA. Synthesis and identification of N 2-(2′-deoxyguanosin-8-yl)-PhIP. Carcinogenesis 13:629–635

    Article  PubMed  CAS  Google Scholar 

  • Friesen MD, Kaderlik K, Lin D, Garren L, Bartsch H, Lang NP, Kadlubar FF (1994) Analysis of DNA adducts of 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine in rat and human tissues by alkaline hydrolysis and gas chromatography/electron capture mass spectrometry: validation by comparison with 32P-postlabeling. Chem Res Toxicol 7:733–739

    Article  PubMed  CAS  Google Scholar 

  • Fukushima S, Wanibuchi H, Morimura K, Iwai S, Nakae D, Kishida H, Tsuda H, Uehara N, Imaida K, Shirai T, Tatematsu M, Tsukamoto T, Hirose M, Furukawa F (2004) Existence of a threshold for induction of aberrant crypt foci in the rat colon with low doses of 2-amino-1-methyl-6-phenolimidazo[4,5-b]pyridine. Toxicol Sci 80:109–114

    Article  PubMed  CAS  Google Scholar 

  • Hasegawa R, Sano M, Tamano S, Imaida K, Shirai T, Nagao M, Sugimura T, Ito N (1993) Dose-dependence of 2-amino-1-methyl-6-phenylimidazo[4,5-b]-pyridine (PhIP) carcinogenicity in rats. Carcinogenesis 14:2553–2557

    Article  PubMed  CAS  Google Scholar 

  • Hughes R, Cross AJ, Pollock JR, Bingham S (2001) Dose-dependent effect of dietary meat on endogenous colonic N-nitrosation. Carcinogenesis 22:199–202

    Article  PubMed  CAS  Google Scholar 

  • Iida A, Tomita M, Hayashi M (2005) Regional difference in P-glycoprotein function in rat intestine. Drug Metab Pharmacokinet 20:100–106

    Article  PubMed  CAS  Google Scholar 

  • Ito N, Hasegawa R, Sano M, Tamano S, Esumi H, Takayama S, Sugimura T (1991) A new colon and mammary carcinogen in cooked food, 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP). Carcinogenesis 12:1503–1506

    Article  PubMed  CAS  Google Scholar 

  • Kaderlik KR, Minchin RF, Mulder GJ, Ilett KF, Daugaard-Jenson M, Teitel CH, Kadlubar FF (1994) Metabolic activation pathway for the formation of DNA adducts of the carcinogen 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) in rat extrahepatic tissues. Carcinogenesis 15:1703–1709

    Article  PubMed  CAS  Google Scholar 

  • Karbach U (1992) Paracellular calcium transport across the small intestine. J Nutr 122:672–677

    PubMed  CAS  Google Scholar 

  • Kühnel D, Taugner F, Scholtka B, Steinberg P (2009) Inflammation does not precede or accompany the induction of preneoplastic lesions in the colon of 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine-fed rats. Arch Toxicol 83:763–768

    Article  PubMed  Google Scholar 

  • Kuhnle GG, Story GW, Reda T, Mani AR, Moore KP, Lunn JC, Bingham SA (2007) Diet-induced endogenous formation of nitroso compounds in the GI tract. Free Radic Biol Med 43:1040–1047

    Article  PubMed  CAS  Google Scholar 

  • Layton DW, Bogen KT, Knize MG, Hatch FT, Johnson VM, Felton JS (1995) Cancer risk of heterocyclic amines in cooked foods: an analysis and implications for research. Carcinogenesis 16:39–52

    Article  PubMed  CAS  Google Scholar 

  • Levi E, Misra S, Du J, Patel BB, Majumdar AP (2009) Combination of aging and dimethylhydrazine treatment causes an increase in cancer-stem cell population of rat colonic crypts. Biochem Biophys Res Commun 385:430–433

    Article  PubMed  CAS  Google Scholar 

  • Lewin MH, Bailey N, Bandaletova T, Bowman R, Cross AJ, Pollock J, Shuker DE, Bingham SA (2006) Red meat enhances the colonic formation of the DNA adduct O 6-carboxymethyl guanine: implications for colorectal cancer risk. Cancer Res 66:1859–1865

    Article  PubMed  CAS  Google Scholar 

  • Lin D, Kaderlik KR, Turesky RJ, Miller DW, Lay JO, Kadlubar FF (1992) Identification of N-(deoxyguanosine-8-yl)-2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine as the major adduct formed by the food-borne carcinogen, 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine, with DNA. Chem Res Toxicol 5:691–697

    Article  PubMed  CAS  Google Scholar 

  • Lin DX, Lang NP, Kadlubar FF (1995) Species differences in the biotransformation of the food-borne carcinogen 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine by hepatic microsomes and cytosols from humans, rats, and mice. Drug Metab Dispos 23:518–524

    PubMed  CAS  Google Scholar 

  • MacLean C, Moenning U, Reichel A, Fricker G (2008) Closing the gaps: a full scan of the intestinal expression of p-glycoprotein, breast cancer resistance protein, and multidrug resistance-associated protein 2 in male and female rats. Drug Metab Dispos 36:1249–1254

    Article  PubMed  CAS  Google Scholar 

  • Malfatti MA, Connors MS, Mauthe RJ, Felton JS (1996) The capability of rat colon tissue slices to metabolize the cooked-food carcinogen 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine. Cancer Res 56:2550–2555

    PubMed  CAS  Google Scholar 

  • Mottino AD, Hoffman T, Jennes L, Vore M (2000) Expression and localization of multidrug resistant protein mrp2 in rat small intestine. J Pharmacol Exp Ther 293:717–723

    PubMed  CAS  Google Scholar 

  • Nagaoka H, Wakabayashi K, Kim S-B, Kim I-S, Tanaka Y, Ochiai M, Tada A, Nukuya H, Sugimura T, Nagao M (1992) Adduct formation at C-8 of guanine on in vitro reaction of the ultimate form of 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine with 2′-deoxyguanosine and its phosphate esters. Jpn J Cancer Res 83:1025–1029

    Article  PubMed  CAS  Google Scholar 

  • Nicken P, Hamscher G, Breves G, Steinberg P (2010) Uptake of the colon carcinogen 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine by different segments of the rat gastrointestinal tract: its implication in colorectal carcinogenesis. Toxicol Lett 196:60–66

    Article  PubMed  CAS  Google Scholar 

  • Norat T, Bingham S, Ferrari P, Slimani N, Jenab M, Mazuir M, Overvad K, Olsen A, Tjonneland A, Clavel F, Boutron-Ruault MC, Kesse E, Boeing H, Bergmann MM, Nieters A, Linseisen J, Trichopoulou A, Trichopoulos D, Tountas Y, Berrino F, Palli D, Panico S, Tumino R, Vineis P, Bueno-de-Mesquita HB, Peeters PH, Engeset D, Lund E, Skeie G, Ardanaz E, Gonzalez C, Navarro C, Quiros JR, Sanchez MJ, Berglund G, Mattisson I, Hallmans G, Palmqvist R, Day NE, Khaw KT, Key TJ, San JM, Hemon B, Saracci R, Kaaks R, Riboli E (2005) Meat, fish, and colorectal cancer risk: the European Prospective Investigation into cancer and nutrition. J Natl Cancer Inst 97:906–916

    Article  PubMed  Google Scholar 

  • Omori M, Hill RC, Scott KC, Lester GD (2011) Evaluation of the secretory response to endogenous and exogenous prostaglandins in mucosa from the proximal and distal portions of the colon of dogs. Am J Vet Res 72:404–409

    Article  PubMed  Google Scholar 

  • Oude Elferink RP, Meijer DK, Kuipers F, Jansen PL, Groen AK, Groothuis GM (1995) Hepatobiliary secretion of organic compounds; molecular mechanisms of membrane transport. Biochim Biophys Acta 1241:215–268

    Article  PubMed  Google Scholar 

  • Pavek P, Merino G, Wagenaar E, Bolscher E, Novotna M, Jonker JW, Schinkel AH (2005) Human breast cancer resistance protein: interactions with steroid drugs, hormones, the dietary carcinogen 2-amino-1-methyl-6-phenylimidazo(4,5-b)pyridine, and transport of cimetidine. J Pharmacol Exp Ther 312:144–152

    Article  PubMed  CAS  Google Scholar 

  • Polentarutti BI, Peterson AL, Sjöberg ÅK, Anderberg EKI, Utter LM, Ungell A-LB (1999) Evaluation of viability of excised rat intestinal segments in Ussing chamber: investigation of morphology, electrical parameters, and permeability characteristics. Pharm Res 16:446–454

    Article  PubMed  CAS  Google Scholar 

  • Qi WM, Yamamoto K, Yokoo Y, Miyata H, Udayanga KG, Kawano J, Yokoyama T, Hoshi N, Kitagawa H (2009) Histoplanimetrical study on the relationship between cellular kinetics of epithelial cells and proliferation of indigenous bacteria in the rat colon. J Vet Med Sci 71:745–752

    Article  PubMed  Google Scholar 

  • Rohrmann S, Zoller D, Hermann S, Linseisen J (2007) Intake of heterocyclic aromatic amines from meat in the European Prospective Investigation into Cancer and Nutrition (EPIC)-Heidelberg cohort. Br J Nutr 98:1112–1115

    Article  PubMed  CAS  Google Scholar 

  • Rost D, Mahner S, Sugiyama Y, Stremmel W (2002) Expression and localization of the multidrug resistance-associated protein 3 in rat small and large intestine. Am J Physiol Gastrointest Liver Physiol 282:G720–G726

    PubMed  CAS  Google Scholar 

  • Scheppach W, Bingham S, Boutron-Ruault MC, Gerhardsson de Verdier M, Moreno V, Nagengast FM, Reifen R, Riboli E, Seitz HK, Wahrendorf J (1999) WHO consensus statement on the role of nutrition in colorectal cancer. Eur J Cancer Prev 8:57–62

    Article  PubMed  CAS  Google Scholar 

  • Schröder B, Kaune R, Harmeyer J (1991) Effects of calcitriol on stimulation of ion transport in pig jejunal mucosa. J Physiol 433:461–465

    Google Scholar 

  • Schultz SG, Zalusky R (1964) Ion transport in isolated rabbit ileum. I. Short-circuit current and Na fluxes. J Gen Physiol 47:567–584

    Article  PubMed  CAS  Google Scholar 

  • Schut HA, Herzog CR (1992) Formation of DNA adducts of 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) in male Fischer-344 rats. Cancer Lett 67:117–124

    Article  PubMed  CAS  Google Scholar 

  • Sinha R, Peters U, Cross AJ, Kulldorff M, Weissfeld JL, Pinsky PF, Rothman N, Hayes RB (2005) Meat, meat cooking methods and preservation, and risk for colorectal adenoma. Cancer Res 65:8034–8041

    Article  PubMed  CAS  Google Scholar 

  • SKLM (1998) Heterocyclische aromatische Amine. Statement of the Permanent Senate Commission on Food Safety of the German Research Foundation, 14./15.12.1998

  • Takahashi S, Tamano S, Hirose M, Kimoto N, Ikeda Y, Sakakibara M, Tada M, Kadlubar FF, Ito N, Shirai T (1998) Immunohistochemical demonstration of carcinogen-DNA adducts in tissues of rats given 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP): detection in paraffin-embedded sections and tissue distribution. Cancer Res 58:4307–4313

    PubMed  CAS  Google Scholar 

  • Thompson LH, Tucker JD, Stewart SA, Christensen ML, Salazar EP, Carrano AV, Felton JS (1987) Genotoxicity of compounds from cooked beef in repair-deficient CHO cells versus Salmonella mutagenicity. Mutagenesis 2:483–487

    Article  PubMed  CAS  Google Scholar 

  • Turesky RJ, Constable A, Richoz J, Varga N, Markovic J, Martin MV, Guengerich FP (1998) Activation of heterocyclic aromatic amines by rat and human liver microsomes and by purified rat and human cytochrome P450 1A2. Chem Res Toxicol 11:925–936

    Article  PubMed  CAS  Google Scholar 

  • van Herwaarden AE, Jonker JW, Wagenaar E, Brinkhuis RF, Schellens JH, Beijnen JH, Schinkel AH (2003) The breast cancer resistance protein (Bcrp1/Abcg2) restricts exposure to the dietary carcinogen 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine. Cancer Res 63:6447–6452

    PubMed  Google Scholar 

  • van Loevezijn A, Allen JD, Schinkel AH, Koomen GJ (2001) Inhibition of BCRP-mediated drug efflux by fumitremorgin-type indolyl diketopiperazines. Bioorg Med Chem Lett 11:29–32

    Article  PubMed  Google Scholar 

  • Vanhaecke L, Knize MG, Noppe H, De Brabander H, Verstraete W, Van de Wiele T (2008a) Intestinal bacteria metabolize the dietary carcinogen 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine following consumption of a single cooked chicken meal in humans. Food Chem Toxicol 46:140–148

    Article  PubMed  CAS  Google Scholar 

  • Vanhaecke L, Vercruysse F, Boon N, Verstraete W, Cleenwerck I, De Wachter M, De Vos P, van de Wiele T (2008b) Isolation and characterization of human intestinal bacteria capable of transforming the dietary carcinogen 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine. Appl Environ Microbiol 74:1469–1477

    Article  PubMed  CAS  Google Scholar 

  • Vanhaecke L, Derycke L, Le Curieux F, Lust S, Marzin D, Verstraete W, Bracke M (2008c) The microbial PhIP metabolite 7-hydroxy-5-methyl-3-phenyl-6,7,8,9-tetrahydropyrido[3′,2′:4,5]imidazo[1,2-a]pyrimidin-5-ium chloride (PhIP-M1) induces DNA damage, apoptosis and cell cycle arrest towards Caco-2 cells. Toxicol Lett 178:61–69

    Article  PubMed  CAS  Google Scholar 

  • Walle UK, Walle T (1999) Transport of the cooked-food mutagen 2-amino-1-methyl-6-phenylimidazo-[4,5-b]pyridine (PhIP) across the human intestinal Caco-2 cell monolayer: role of efflux pumps. Carcinogenesis 20:2153–2157

    Article  PubMed  CAS  Google Scholar 

  • Wallin H, Mikalsen A, Guengerich FP, Ingelman-Sundberg M, Solberg KE, Rossland OR, Alexander J (1990) Differential rates of metabolic activation and detoxication of the food mutagen 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine by different cytochrome P450 enzymes. Carcinogenesis 11:489–492

    Article  PubMed  CAS  Google Scholar 

  • Watkins BE, Esumi H, Wakayabashi K, Nagao M, Sugimura T (1991) Fate and distribution of 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) in rats. Carcinogenesis 12:1073–1078

    Article  PubMed  CAS  Google Scholar 

  • Wu K, Giovannucci E, Byrne C, Platz EA, Fuchs C, Willett WC, Sinha R (2006) Meat mutagens and risk of distal colon adenoma in a cohort of U.S. men. Cancer Epidemiol Biomarkers Prev 15:1120–1125

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Marion Burmester, Marion Loh, Kerstin Kiri, Yvonne Armbrecht and Michael Rohde for their excellent technical assistance.

Conflict of interest

The authors state that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pablo Steinberg.

Additional information

Petra Nicken, Bernd Schröder and Anne von Keutz contributed equally to the study.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nicken, P., Schröder, B., von Keutz, A. et al. The colon carcinogen 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) is actively secreted in the distal colon of the rat: an integrated view on the role of PhIP transport and metabolism in PhIP-induced colon carcinogenesis. Arch Toxicol 87, 895–904 (2013). https://doi.org/10.1007/s00204-012-1006-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00204-012-1006-0

Keywords

Navigation