Skip to main content
Log in

The impact of FANCD2 deficiency on formaldehyde-induced toxicity in human lymphoblastoid cell lines

  • Genotoxicity and Carcinogenicity
  • Published:
Archives of Toxicology Aims and scope Submit manuscript

Abstract

Formaldehyde (FA), a major industrial chemical and ubiquitous environmental pollutant, has recently been classified by the International Agency for Research on Cancer as a human leukemogen. The major mode of action of FA is thought to be the formation of DNA–protein cross-links (DPCs). Repair of DPCs may be mediated by the Fanconi anemia pathway; however, data supporting the involvement of this pathway are limited, particularly in human hematopoietic cells. Therefore, we assessed the role of FANCD2, a critical component of the Fanconi anemia pathway, in FA-induced toxicity in human lymphoblast cell models of FANCD2 deficiency (PD20 cells) and FANCD2 sufficiency (PD20-D2 cells). After treatment of the cells with 0–150 μM FA for 24 h, DPCs were increased in a dose-dependent manner in both cell lines, with greater increases in FANCD2-deficient PD20 cells. FA also induced cytotoxicity, micronuclei, chromosome aberrations, and apoptosis in a dose-dependent manner in both cell lines, with greater increases in cytotoxicity and apoptosis in PD20 cells. Increased levels of γ-ATR and γ-H2AX in both cell lines suggested the recognition of FA-induced DNA damage; however, the induction of BRCA2 was compromised in FANCD2-deficient PD20 cells, potentially reducing the capacity to repair DPCs. Together, these findings suggest that FANCD2 protein and the Fanconi anemia pathway are essential to protect human lymphoblastoid cells against FA toxicity. Future studies are needed to delineate the role of this pathway in mitigating FA-induced toxicity, particularly in hematopoietic stem cells, the target cells in leukemia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Baan R, Grosse Y, Straif K, Secretan B, El Ghissassi F, Bouvard V, Benbrahim-Tallaa L, Guha N, Freeman C, Galichet L, Cogliano V (2009) A review of human carcinogens–Part F: chemical agents and related occupations. Lancet Oncol 10:1143–1144

    Article  PubMed  Google Scholar 

  • Bauchinger M, Schmid E (1985) Cytogenetic effects in lymphocytes of formaldehyde workers of a paper factory. Mutat Res 158:195–199

    Article  PubMed  CAS  Google Scholar 

  • Bonassi S, El-Zein R, Bolognesi C, Fenech M (2011) Micronuclei frequency in peripheral blood lymphocytes and cancer risk: evidence from human studies. Mutagenesis 26:93–100

    Article  PubMed  CAS  Google Scholar 

  • Costa M, Zhitkovich A, Gargas M, Paustenbach D, Finley B, Kuykendall J, Billings R, Carlson TJ, Wetterhahn K, Xu J, Patierno S, Bogdanffy M (1996) Interlaboratory validation of a new assay for DNA-protein crosslinks. Mutat Res 369:13–21

    Article  PubMed  CAS  Google Scholar 

  • D’Andrea AD, Grompe M (2003) The Fanconi anaemia/BRCA pathway. Nat Rev Cancer 3:23–34

    Article  PubMed  Google Scholar 

  • de Graaf B, Clore A, McCullough AK (2009) Cellular pathways for DNA repair and damage tolerance of formaldehyde-induced DNA-protein crosslinks. DNA Repair (Amst) 8:1207–1214

    Article  Google Scholar 

  • Fenech M (2000) The in vitro micronucleus technique. Mutat Res 455:81–95

    Article  PubMed  CAS  Google Scholar 

  • Friedenson B (2011) A common environmental carcinogen unduly affects carriers of cancer mutations: carriers of genetic mutations in a specific protective response are more susceptible to an environmental carcinogen. Med Hypotheses 77:791–797

    Article  PubMed  CAS  Google Scholar 

  • Grafstrom RC, Fornace A Jr, Harris CC (1984) Repair of DNA damage caused by formaldehyde in human cells. Cancer Res 44:4323–4327

    PubMed  CAS  Google Scholar 

  • Heck HD, Casanova-Schmitz M, Dodd PB, Schachter EN, Witek TJ, Tosun T (1985) Formaldehyde (CH2O) concentrations in the blood of humans and Fischer-344 rats exposed to CH2O under controlled conditions. Am Ind Hyg Assoc J 46:1–3

    Article  PubMed  CAS  Google Scholar 

  • Houghtaling S, Timmers C, Noll M, Finegold MJ, Jones SN, Meyn MS, Grompe M (2003) Epithelial cancer in Fanconi anemia complementation group D2 (Fancd2) knockout mice. Genes Dev 17:2021–2035

    Article  PubMed  CAS  Google Scholar 

  • IARC (1995) Formaldehyde. IARC Monogr Eval Carcinog Risks Hum 62:217–375

    Google Scholar 

  • IARC (2006) Formaldehyde, 2-butoxyethanol and 1-tert-butoxypropan-2-ol. IARC Monogr Eval Carcinog Risks Hum 88:1–478

    Google Scholar 

  • Jakab MG, Klupp T, Besenyei K, Biro A, Major J, Tompa A (2010) Formaldehyde-induced chromosomal aberrations and apoptosis in peripheral blood lymphocytes of personnel working in pathology departments. Mutat Res 698:11–17

    Article  PubMed  CAS  Google Scholar 

  • Lorenti Garcia C, Mechilli M, Proietti De Santis L, Schinoppi A, Kobos K, Palitti F (2009) Relationship between DNA lesions, DNA repair and chromosomal damage induced by acetaldehyde. Mutat Res 662:3–9

    Article  PubMed  CAS  Google Scholar 

  • Merk O, Speit G (1998) Significance of formaldehyde-induced DNA-protein crosslinks for mutagenesis. Environ Mol Mutagen 32:260–268

    Article  PubMed  CAS  Google Scholar 

  • Nakano T, Katafuchi A, Matsubara M, Terato H, Tsuboi T, Masuda T, Tatsumoto T, Pack SP, Makino K, Croteau DL, Van Houten B, Iijima K, Tauchi H, Ide H (2009) Homologous recombination but not nucleotide excision repair plays a pivotal role in tolerance of DNA-protein cross-links in mammalian cells. J Biol Chem 284:27065–27076

    Article  PubMed  CAS  Google Scholar 

  • Noda T, Takahashi A, Kondo N, Mori E, Okamoto N, Nakagawa Y, Ohnishi K, Zdzienicka MZ, Thompson LH, Helleday T, Asada H, Ohnishi T (2011) Repair pathways independent of the Fanconi anemia nuclear core complex play a predominant role in mitigating formaldehyde-induced DNA damage. Biochem Biophys Res Commun 404:206–210

    Article  PubMed  CAS  Google Scholar 

  • NTP (2010) Final report on carcinogens background document for formaldehyde. Rep Carcinog Backgr Doc 10-5981:i-512. http://www.ncbi.nlm.nih.gov/pubmed/20737003

  • Parmar K, Kim J, Sykes SM, Shimamura A, Stuckert P, Zhu K, Hamilton A, Deloach MK, Kutok JL, Akashi K, Gilliland DG, D’Andrea A (2010) Hematopoietic stem cell defects in mice with deficiency of Fancd2 or Usp1. Stem Cells 28:1186–1195

    Article  PubMed  CAS  Google Scholar 

  • Reliene R, Yamamoto ML, Rao PN, Schiestl RH (2010) Genomic instability in mice is greater in Fanconi anemia caused by deficiency of Fancd2 than Fancg. Cancer Res 70:9703–9710

    Article  PubMed  CAS  Google Scholar 

  • Ridpath JR, Nakamura A, Tano K, Luke AM, Sonoda E, Arakawa H, Buerstedde JM, Gillespie DA, Sale JE, Yamazoe M, Bishop DK, Takata M, Takeda S, Watanabe M, Swenberg JA, Nakamura J (2007) Cells deficient in the FANC/BRCA pathway are hypersensitive to plasma levels of formaldehyde. Cancer Res 67:11117–11122

    Article  PubMed  CAS  Google Scholar 

  • Rosado IV, Langevin F, Crossan GP, Takata M, Patel KJ (2011) Formaldehyde catabolism is essential in cells deficient for the Fanconi anemia DNA-repair pathway. Nat Struct Mol Biol 18:1432–1434

    Article  PubMed  CAS  Google Scholar 

  • Speit G, Schutz P, Merk O (2000) Induction and repair of formaldehyde-induced DNA-protein crosslinks in repair-deficient human cell lines. Mutagenesis 15:85–90

    Article  PubMed  CAS  Google Scholar 

  • Thompson LH, Hinz JM (2009) Cellular and molecular consequences of defective Fanconi anemia proteins in replication-coupled DNA repair: mechanistic insights. Mutat Res 668:54–72

    Article  PubMed  CAS  Google Scholar 

  • Thomson EJ, Shackleton S, Harrington JM (1984) Chromosome aberrations and sister-chromatid exchange frequencies in pathology staff occupationally exposed to formaldehyde. Mutat Res 141:89–93

    Article  PubMed  CAS  Google Scholar 

  • Timmers C, Taniguchi T, Hejna J, Reifsteck C, Lucas L, Bruun D, Thayer M, Cox B, Olson S, D’Andrea AD, Moses R, Grompe M (2001) Positional cloning of a novel Fanconi anemia gene, FANCD2. Mol Cell 7:241–248

    Article  PubMed  CAS  Google Scholar 

  • Zhang L, Freeman LE, Nakamura J, Hecht SS, Vandenberg JJ, Smith MT, Sonawane BR (2010a) Formaldehyde and leukemia: epidemiology, potential mechanisms, and implications for risk assessment. Environ Mol Mutagen 51:181–191

    PubMed  CAS  Google Scholar 

  • Zhang L, Tang X, Rothman N, Vermeulen R, Ji Z, Shen M, Qiu C, Guo W, Liu S, Reiss B, Freeman LB, Ge Y, Hubbard AE, Hua M, Blair A, Galvan N, Ruan X, Alter BP, Xin KX, Li S, Moore LE, Kim S, Xie Y, Hayes RB, Azuma M, Hauptmann M, Xiong J, Stewart P, Li L, Rappaport SM, Huang H, Fraumeni JF Jr, Smith MT, Lan Q (2010b) Occupational exposure to formaldehyde, hematotoxicity, and leukemia-specific chromosome changes in cultured myeloid progenitor cells. Cancer Epidemiol Biomarkers Prev 19:80–88

    Article  PubMed  CAS  Google Scholar 

  • Zhitkovich A, Costa M (1992) A simple, sensitive assay to detect DNA-protein crosslinks in intact cells and in vivo. Carcinogenesis 13:1485–1489

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to Prof. Toshiyasu Taniguchi from the Fred Hutchinson Cancer Research Center, Seattle, WA, for generously providing us with the human lymphoblast PD20 and PD20-D2 cells. This work was supported by National Institute of Environmental Health Sciences, National Institute of Health grant R01ES017452 to Dr. L Zhang.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luoping Zhang.

Additional information

Xuefeng Ren and Zhiying Ji contributed to this work equally.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ren, X., Ji, Z., McHale, C.M. et al. The impact of FANCD2 deficiency on formaldehyde-induced toxicity in human lymphoblastoid cell lines. Arch Toxicol 87, 189–196 (2013). https://doi.org/10.1007/s00204-012-0911-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00204-012-0911-6

Keywords

Navigation