Skip to main content
Log in

Two distinct periplasmic enzymes are responsible for tellurite/tellurate and selenite reduction by strain ER-Te-48 associated with the deep sea hydrothermal vent tube worms at the Juan de Fuca Ridge black smokers

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

Strain ER-Te-48 isolated from a deep-ocean hydrothermal vent tube worm is capable of resisting and reducing extremely high levels of tellurite, tellurate, and selenite, which are used for respiration anaerobically. Tellurite and tellurate reduction is accomplished by a periplasmic enzyme of 215 kDa comprised of 3 subunits (74, 42, and 25 kDa) in a 2:1:1 ratio. The optimum pH and temperature for activity is 8.0 and 35 °C, respectively. Tellurite reduction has a V max of 5.6 µmol/min/mg protein and a K m of 3.9 mM. In the case of the tellurate reaction, V max and K m were 2.6 µmol/min/mg protein and 2.6 mM, respectively. Selenite reduction is carried out by another periplasmic enzyme with a V max of 2.8 µmol/min/mg protein, K m of 12.1 mM, and maximal activity at pH 6.0 and 38 °C. This protein is 165 kDa and comprised of 3 subunits of 98, 44, and 23 kDa in a 1:1:1 ratio.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Copeland A et al (2006) Complete sequence of Shewanella frigidimarina NCIMB 400. Submitted (Aug. Sept. 2006). Released 09/14/2006 by the DOE Joint Genome Institute

  • Altshul S et al (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  Google Scholar 

  • Avazeri C et al (1997) Tellurite reductase activity of nitrate reductase is responsible for the basal resistance of Escherichia coli to tellurite. Microbiology 143:1181–1189

    Article  CAS  PubMed  Google Scholar 

  • Baesman S et al (2007) Formation of tellurium nanocrystals during anaerobic growth of bacteria that use Te oxyanions as respiratory electron acceptors. Appl Environ Microbiol 73(7):2135–2143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baesman S, Stolz J, Kulp T (2009) Enrichment and isolation of Bacillus beveridgei sp. nov., a facultative anaerobic haloalkaliphile from Mono lake, California, that respires oxyanions of tellurium, selenium, and arsenic. Extremophiles 13:695–705

    Article  CAS  PubMed  Google Scholar 

  • Borsetti F, Francia F, Turner R, Zannoni D (2007) The thiol:disulfide oxidoreductase DsbB mediates the oxidizing effects of the toxic metalloid tellurite (TeO3 2−) on the plasma membrane redox system of the facultative phototroph Rhodobacter capsulatus. J Bacteriol 189(3):851–859

    Article  CAS  PubMed  Google Scholar 

  • Bradford M (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Calderon I et al (2006) Catalases are NAD(P)H-dependent tellurite reductases. PLoS One 1:1–8

    Article  Google Scholar 

  • Cantafio A et al (1996) Pilot-scale selenium bioremediation of San Joaquin drainage water with Thaurea selenatis. Appl Environ Microbiol 62(9):3298–3303

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chiang S, Lou Y, Chen C (2008) NMR solution of KP-TerB, a tellurite-resistance protein from Klebsiella pneumonia. Protein Sci 17:785–789

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chiong M, Gonzalez E, Barra R, Vasquez C (1988) Purification and biochemical characterization of tellurite-reducing activities from Thermus thermophilus HB8. J Bacteriol 170(7):3269–3273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cone J, Del Rio R, Davis J, Stadtman T (1976) Chemical characterization of the selenoprotein component of clostridial glycine reductase: identification of selenocysteine as the organoselenium moiety. PNAS 73(8):2659–2663

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Csotonyi J, Stackebrandt E, Yurkov V (2006) Anaerobic respiration on tellurate and other metalloids in bacteria from hydrothermal vent fields in the eastern Pacific Ocean. Appl Environ Microbiol 72(7):4950–4956

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • DeMoll-Decker H, Macy J (1993) The periplasmic nitrate reductase of Thaurea selenatis may catalyze the reduction of selenite to elemental selenium. Arch Microbiol 160:241–247

    CAS  Google Scholar 

  • Dhanjal S, Cameotra S (2010) Aerobic biogenesis of selenium nanospheres by Bacillus cereus isolated from coal mine soil. Microb Cell Fact 9:52–63

    Article  PubMed  PubMed Central  Google Scholar 

  • Elias A et al (2012) Tellurite enters Escherichia coli mainly through the PitA phosphate transporter. Microbiol Open 1(3):259–267

    Article  CAS  Google Scholar 

  • Etezad S et al (2009) Evidence on the presence of two distinct enzymes responsible for the reduction of selenate and tellurite in Bacillus sp. STG-83. Enzyme Microb Technol 45:1–6

    Article  CAS  Google Scholar 

  • Felbeck H, Jarchow J (1998) Carbon release from purified chemoautotrophic bacterial symbionts of the hydrothermal vent tubeworm Riftia pachyptila. Physiol Zool 71:294–302

    Article  CAS  PubMed  Google Scholar 

  • Garcia-Robledo E, Corzo A, Papaspyrou S (2014) A fast and direct spectrophotometric method for the sequential determination of nitrate and nitrite at low concentrations in small volumes. Mar Chem 162:30–36

    Article  CAS  Google Scholar 

  • Guzzo J, Dubow M (2000) A novel selenite- and tellurite-inducible gene in Escherichia coli. Appl Environ Microbiol 66(11):4972–4978

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huberts D, van der Klei I (2010) Moonlighting proteins: an intriguing mode of multitasking. Biochem Biophys Acta 1803:520–525

    Article  CAS  PubMed  Google Scholar 

  • Hunter W, Manter D (2009) Reduction of selenite to elemental red selenium by Pseudomonas sp. strain CA5. Curr Microbiol 58:493–498

    Article  CAS  PubMed  Google Scholar 

  • Kabiri M et al (2009) Effects of selenite and tellurite on growth, physiology, and proteome of a moderately halophilic bacterium. J Proteome Res 8:3098–3108

    Article  CAS  PubMed  Google Scholar 

  • Kim Y et al (2013) Molecular chaperone functions in protein folding and proteostasis. Ann Rev Biochem 82:323–355

    Article  CAS  PubMed  Google Scholar 

  • Krafft T, Bowen A, Theis F, Macy J (2000) Cloning and sequencing of the genes encoding the periplasmic-cytochrome B-containing selenate reductase of Thauera selenatis. DNA Seq 10(6):365–377

    Article  CAS  PubMed  Google Scholar 

  • Laemmli U (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  CAS  PubMed  Google Scholar 

  • Laverman A et al (1995) Growth of strain SES-3 with arsenate and other diverse electron acceptors. Appl Environ Microbiol 61:3556–3561

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li D-B et al (2014) Selenite reduction by Shewanella oneidensis MR-1 is mediated by fumarate reductase in periplasm. Sci Rep 4:3735–3741

    Article  PubMed  PubMed Central  Google Scholar 

  • Lloyd J, Mabbett A, Williams D, Macaskie L (2001) Metal reduction by sulfate-reducing bacteria: physiological diversity and metal specificity. Hydrometallurgy 59(2):327–337

    Article  CAS  Google Scholar 

  • Lloyd-Jones G, Ritchie D, Strike P (1991) Biochemical and biophysical analysis of plasmid pMJ600-encoded tellurite (TeO3 2−) resistance. FEMS Microbiol Lett 81:19–24

    CAS  Google Scholar 

  • Loboda A, Krutchinsky A, Ens W, Standing K (2000) A tandem quadrupole/time-of-flight mass spectrometer with a matrix-assisted laser desorption/ionization source: design and performance. Rapid Commun Mass Spectrom 14:1047–1057

    Article  CAS  PubMed  Google Scholar 

  • Lovley D et al (1998) Humic substances as a mediator for microbially catalyzed metal reduction. Acta Hydrochim et Hydrobiol 26(3):152–157

    Article  CAS  Google Scholar 

  • Macy J, Lawson S, DeMoll-Decker H (1993) Bioremediation of selenium oxyanions in San Joaquin drainage water using Thaurea selenatis in a biological reactor system. Appl Environ Microbiol 40:588–594

    CAS  Google Scholar 

  • Maltman C, Yurkov V (2014) The impact of tellurite on highly resistant marine bacteria and strategies for its reduction. Int J Environ Eng Natural Res 1(3):109–119

    Google Scholar 

  • Maltman C, Piercey-Normore M, Yurkov V (2015) Tellurite-, tellurate-, and selenite-based anaerobic respiration by strain CM-3 isolated from gold mine tailings. Extremophiles 19(5):1013–1019

    Article  CAS  PubMed  Google Scholar 

  • Maltman C, Walter G, Yurkov V (2016) A diverse community of metal(loid) oxide respiring bacteria is associated with tube worms in the vicinity of the Juan de Fuca Ridge black smoker field. PLoS One 11(2):e0149812

    Article  PubMed  PubMed Central  Google Scholar 

  • Mantsala P, Nieme J (2009) Enzymes: the biological catalysts of life. In: Hanninen O, Atalay M (eds) Physiology and maintenance. Eolss, Paris, pp 1–22

  • Matrix Science Limited (2014) Matrix science. Available at: http://www.matrixscience.com (Online). Accessed 22 Feb 2016

  • Molina R et al (2010) Simple, fast, and sensitive method for quantification of tellurite in culture media. Appl Environ Microbiol 76(14):4901–4904

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moore M, Kaplan S (1992) Identification of intrinsic high-level resistance to rare-earth oxides and oxyanions in members of the class Proteobacteria: characterization of tellurite, selenite, and rhodium sesquioxide reduction in Rhodobacter sphaeroides. J Bacteriol 174:1505–1514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morton R, Earlam W (1941) Absorption spectra in relation to quinones: 1,4-naphthoquinone, anthraquinone, and their derivatives. J Chem Soc (Resumed), pp 159–169

  • Moscoso H et al (1998) Biochemical characterization of tellurite-reducing activities of Bacillus stearothermophilus V. Res Microbiol 149:389–397

    Article  CAS  PubMed  Google Scholar 

  • Ohtsubo Y et al (2014) Complete genome sequence of Pseudomonas sp. strain TKP, isolated from a gamma-hexachlorocyclohexane-degrading mixed culture. Genome Announc 2(1):e01241-13

    Article  PubMed  PubMed Central  Google Scholar 

  • Rajwade J, Paknikar K (2003) Bioreduction of tellurite to elemental tellurium by Pseudomonas mendocina MCM B-180 and its practical application. Hydrometallurgy 71(1–2):243–248

    Article  CAS  Google Scholar 

  • Rathgeber C et al (2002) Isolation of tellurite- and selenite-reducing bacteria from hydrothermal vents of the Juan de Fuca Ridge in the Pacific Ocean. Appl Environ Microbiol 68(9):4613–4622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sabaty M, Avazeri C, Pignol D, Vermeglio A (2001) Characterization of the reduction of selenate and tellurite by nitrate reductases. Appl Environ Microbiol 67(11):5122–5126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schneider C, Rasband W, Eliceiri K (2012) NIH image to ImageJ: 25 years of image analysis. Nat Methods 9:671–675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schroder I, Rech S, Krafft T, Macy J (1997) Purification and characterization of the selenate reductase from Thauera selenatis. J Biol Chem 272:23765–23768

    Article  CAS  PubMed  Google Scholar 

  • Shevchenko A et al (2000) MALDI quadrupole time-of-flight mass spectrometry: a powerful tool for proteomic research. Anal Chem 72:2132–2141

    Article  CAS  PubMed  Google Scholar 

  • Shevchenko A et al (2006) In gel digestion for mass spectrometric characterization of proteins and proteomes. Nat Protoc 1:2856–2860

    Article  CAS  PubMed  Google Scholar 

  • Taylor D (1999) Bacterial tellurite resistance. Trends Microbiol 7:111–115

    Article  CAS  PubMed  Google Scholar 

  • Taylor D, Walter E, Sherburne R, Bazett-Jones D (1988) Structure and location of tellurium deposited in Escherichia coli cells harboring tellurite resistance plasmids. J Ultrastruct Mol Struct Res 99:18–26

    Article  CAS  PubMed  Google Scholar 

  • Thomas J, Kay W (1986) Tellurite susceptibility and non-plasmid mediated resistance in Escherichia coli. Antimicrob Agents Chemother 30:127–131

    Article  Google Scholar 

  • Wilson C (1983) Staining of proteins on gels: comparison of dyes and procedures. Methods Enzymol 91:236–247

    Article  CAS  PubMed  Google Scholar 

  • Wood J (1974) Biological cycles for toxic elements in the environment. Science 4129:1049–1052

    Article  Google Scholar 

  • Yanke L, Bryant R, Laishely E (1995) Hydrogenase (I) of Clostridium pasteurianum functions as a novel selenite reductase. Anaerobes 1:61–67

    Article  CAS  Google Scholar 

  • Yurkov V, Jappe J, Vermiglio A (1996) Tellurite resistance and reduction by obligately aerobic photosynthetic bacteria. Appl Environ Microbiol 62:4195–4198

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to thank Dr. B. Mark’s laboratory for assistance with column purification, V. Spicer and V. M. Collado for technical assistance in the mass spectrometry laboratory, and Drs. W. Ens and K. G. Standing for access to the mass spectrometers.

Funding

This work was supported by a NSERC Canada Discovery Grant and University of Manitoba GETS funds held by Dr. V. Yurkov and a University of Manitoba, Faculty of Science Scholarship awarded to C. Maltman.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir Yurkov.

Additional information

Communicated by Erko Stackebrandt.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1260 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maltman, C., Donald, L.J. & Yurkov, V. Two distinct periplasmic enzymes are responsible for tellurite/tellurate and selenite reduction by strain ER-Te-48 associated with the deep sea hydrothermal vent tube worms at the Juan de Fuca Ridge black smokers. Arch Microbiol 199, 1113–1120 (2017). https://doi.org/10.1007/s00203-017-1382-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-017-1382-1

Keywords

Navigation