Skip to main content

Advertisement

Log in

l-Threonine and its analogue added to autoclaved solid medium suppress trichothecene production by Fusarium graminearum

  • Short Communication
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

Fusarium graminearum produces trichothecene mycotoxins under certain nutritional conditions. When l-Thr and its analogue l-allo-threonine were added to brown rice flour solid medium before inoculation, trichothecene production after 4 days of incubation was suppressed. A time-course analysis of gene expression demonstrated that l-Thr suppressed transcription of Tri6, a trichothecene master regulator gene, and a terpene cyclase Tri5 gene. Regulation of trichothecene biosynthesis by altering major primary metabolic processes may open up the possibility to develop safe chemicals for the reduction of mycotoxin contamination might be developed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

References

  • Aristimuño Ficoseco ME, Vattuone MA, Audenaert K, Catalan CA, Sampietro DA (2014) Antifungal and antimycotoxigenic metabolites in Anacardiaceae species from northwest Argentina: isolation, identification and potential for control of Fusarium species. J Appl Microbiol 116:1262–1273. doi:10.1111/jam.12436

    Article  PubMed  Google Scholar 

  • Bai GH, Desjardins AE, Plattner RD (2002) Deoxynivalenol-nonproducing Fusarium graminearum causes initial infection, but does not cause disease spread in wheat spikes. Mycopathologia 91–98. doi:10.1023/A:1014419323550

    PubMed  Google Scholar 

  • Boutigny AL, Barreau C, Atanasova-Penichon V, Verdal-Bonnin MN, Pinson-Gadais L, Richard-Forget F (2009) Ferulic acid, an efficient inhibitor of type B trichothecene biosynthesis and Tri gene expression in Fusarium liquid cultures. Mycol Res 113:746–753. doi:10.1016/j.mycres.2009.02.010

    Article  CAS  PubMed  Google Scholar 

  • Boutigny AL, Atanasova-Penichon V, Benet M, Barreau C, Richard-Forget F (2010) Natural phenolic acids from wheat bran inhibit Fusarium culmorum trichothecene biosynthesis in vitro by repressing Tri gene expression. Eur J Plant Pathol 127:275–286. doi:10.1007/S10658-010-9592-2

    Article  CAS  Google Scholar 

  • Desjardins AE (2009) From yellow rain to green wheat: 25 years of trichothecene biosynthesis research. J Agric Food Chem 57:4478–4484. doi:10.1021/jf9003847

    Article  CAS  PubMed  Google Scholar 

  • Desjardins AE, Plattner RD, Beremand MN (1987) Ancymidol blocks trichothecene biosynthesis and leads to accumulation of trichodiene in Fusarium sporotrichioides and Gibberella pulicaris. Appl Environ Microbiol 53:1860–1865

    CAS  PubMed  PubMed Central  Google Scholar 

  • Desjardins AE, Plattner RD, Spencer GF (1988) Inhibition of trichothecene toxin biosynthesis by naturally occurring shikimate aromatics. Phytochemistry 27:767–771

    Article  CAS  Google Scholar 

  • Edgar AJ (2005) Mice have a transcribed l-threonine aldolase/GLY1 gene, but the human GLY1 gene is a non-processed pseudogene. BMC Genomics 6:32. doi:10.1186/1471-2164-6-32

    Article  PubMed  PubMed Central  Google Scholar 

  • Etzerodt T, Maeda K, Nakajima Y, Laursen B, Fomsgaard IS, Kimura M (2015) 2,4-Dihydroxy-7-methoxy-2H-1,4-benzoxazin-3(4H)-one (DIMBOA) inhibits trichothecene production by Fusarium graminearum through suppression of Tri6 expression. Int J Food Microbiol 214:123–128. doi:10.1016/j.ijfoodmicro.2015.07.014

    Article  CAS  PubMed  Google Scholar 

  • Faltusová Z, Chrpová J, Salačová L, Džuman Z, Pavel J, Zachariášová M, Hajšlová J, Ovesná J (2015) Effect of Fusarium culmorum Tri gene transcription on deoxynivalenol and D3G levels in two different barley cultivars. J Phytopathol 163:593–603. doi:10.1111/jph.12359

    Article  Google Scholar 

  • Giese H, Sondergaard TE, Sorensen JL (2013) The AreA transcription factor in Fusarium graminearum regulates the use of some nonpreferred nitrogen sources and secondary metabolite production. Fungal Biol 117:814–821. doi:10.1016/j.funbio.2013.10.006

    Article  CAS  PubMed  Google Scholar 

  • Hohn TM, Beremand PD (1989) Isolation and nucleotide sequence of a sesquiterpene cyclase gene from the trichothecene-producing fungus Fusarium sporotrichioides. Gene 79:131–138

    Article  CAS  PubMed  Google Scholar 

  • Kim HK, Yun SH (2011) Evaluation of potential reference genes for quantitative RT-PCR analysis in Fusarium graminearum under different culture conditions. Plant Pathol J 27:301–309. doi:10.5423/Ppj.2011.27.4.301

    Article  CAS  Google Scholar 

  • Kimura M, Takahashi-Ando N, Nishiuchi T, Ohsato S, Tokai T, Ochial N, Fujimura M, Kudo T, Hamamoto H, Yamaguchi I (2006) Molecular biology and biotechnology for reduction of Fusarium mycotoxin contamination. Pestic Biochem Physiol 86:117–123. doi:10.1016/j.pestbp.2006.02.008

    Article  CAS  Google Scholar 

  • Kimura M, Tokai T, Takahashi-Ando N, Ohsato S, Fujimura M (2007) Molecular and genetic studies of Fusarium trichothecene biosynthesis: pathways, genes, and evolution. Biosci Biotechnol Biochem 71:2105–2123. doi:10.1271/bbb.70183

    Article  CAS  PubMed  Google Scholar 

  • Kulik T, Busko M, Pszczolkowska A, Perkowski J, Okorski A (2014) Plant lignans inhibit growth and trichothecene biosynthesis in Fusarium graminearum. Lett Appl Microbiol 59:99–107. doi:10.1111/lam.12250

    Article  CAS  PubMed  Google Scholar 

  • Maeda K, Nakajima Y, Motoyama T, Kitou Y, Kosaki T, Saito T, Nishiuchi T, Kanamaru K, Osada H, Kobayashi T, Kimura M (2014) Effects of acivicin on growth, mycotoxin production and virulence of phytopathogenic fungi. Lett Appl Microbiol 59:377–383. doi:10.1111/lam.12289

    Article  CAS  PubMed  Google Scholar 

  • Maeda K, Nakajima Y, Tanahashi K, Kosaki T, Kitou Y, Kanamaru K, Kobayashi T, Nishiuchi T, Kimura M (2016) Characterization of the acivicin effects on trichothecene production by Fusarium graminearum species complex. J Gen Appl Microbiol 62:272-276. doi:10.2323/jgam.2016.04.002

    Article  CAS  PubMed  Google Scholar 

  • McCormick SP, Stanley AM, Stover NA, Alexander NJ (2011) Trichothecenes: from simple to complex mycotoxins. Toxins 3:802–814. doi:10.3390/toxins3070802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Merhej J, Richard-Forget F, Barreau C (2011) Regulation of trichothecene biosynthesis in Fusarium: recent advances and new insights. Appl Microbiol Biotechnol 91:519–528. doi:10.1007/s00253-011-3397-x

    Article  CAS  PubMed  Google Scholar 

  • Min K, Shin Y, Son H, Lee J, Kim JC, Choi GJ, Lee YW (2012) Functional analyses of the nitrogen regulatory gene areA in Gibberella zeae. FEMS Microbiol Lett 334:66–73. doi:10.1111/j.1574-6968.2012.02620.x

    Article  CAS  PubMed  Google Scholar 

  • Nakajima Y, Tokai T, Maeda K, Tanaka A, Takahashi-Ando N, Kanamaru K, Kobayashi T, Kimura M (2014) A set of heterologous promoters useful for investigating gene functions in Fusarium graminearum. JSM Mycotoxins 64:147–152. doi:10.2520/myco.64.147

    Article  Google Scholar 

  • Nakajima Y, Maeda K, Jin Q, Takahashi-Ando N, Kanamaru K, Kobayashi T, Kimura M (2016) Oligosaccharides containing an α-(1→2) (glucosyl/xylosyl)-fructosyl linkage as inducer molecules of trichothecene biosynthesis for Fusarium graminearum. Int J Food Microbiol 238:215-221. doi:10.1016/j.ijfoodmicro.2016.09.011

    Article  CAS  PubMed  Google Scholar 

  • Nelson DL, Cox MN (2008) Lehninger principles of biochemistry, 5 edn. Freeman, New York, NY, USA

    Google Scholar 

  • Nishiuchi T, Masuda D, Nakashita H, Ichimura K, Shinozaki K, Yoshida S, Kimura M, Yamaguchi I, Yamaguchi K (2006) Fusarium phytotoxin trichothecenes have an elicitor-like activity in Arabidopsis thaliana, but the activity differed significantly among their molecular species. Mol Plant Microbe Interact 19:512–520. doi:10.1094/MPMI-19-0512

    Article  CAS  PubMed  Google Scholar 

  • Ochiai N, Tokai T, Takahashi-Ando N, Fujimura M, Kimura M (2007) Genetically engineered Fusarium as a tool to evaluate the effects of environmental factors on initiation of trichothecene biosynthesis. FEMS Microbiol Lett 275:53–61. doi:10.1111/j.1574-6968.2007.00869.x

    Article  CAS  PubMed  Google Scholar 

  • Ohno M, Tsuda K, Sakaguchi M, Sugahara Y, Oyama F (2012) Chitinase mRNA levels by quantitative PCR using the single standard DNA: acidic mammalian chitinase is a major transcript in the mouse stomach. PLoS One 7:e50381. doi:10.1371/journal.pone.0050381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pagnussatt FA, Del Ponte EM, Garda-Buffon J, Badiale-Furlong E (2014) Inhibition of Fusarium graminearum growth and mycotoxin production by phenolic extract from Spirulina sp. Pestic Biochem Physiol 108:21–26. doi:10.1016/j.pestbp.2013.11.002

    Article  CAS  Google Scholar 

  • Pani G, Scherm B, Azara E, Balmas V, Jahanshiri Z, Carta P, Fabbri D, Dettori MA, Fadda A, Dessi A, Dallocchio R, Migheli Q, Delogu G (2014) Natural and natural-like phenolic inhibitors of type B trichothecene in vitro production by the wheat (Triticum sp.) pathogen Fusarium culmorum. J Agric Food Chem 62:4969–4978. doi:10.1021/jf500647h

    Article  CAS  PubMed  Google Scholar 

  • Pinson-Gadais L, Richard-Forget F, Frasse P, Barreau C, Cahagnier B, Richard-Molard D, Bakan B (2008) Magnesium represses trichothecene biosynthesis and modulates Tri5, Tri6, and Tri12 genes expression in Fusarium graminearum. Mycopathologia 165:51–59. doi:10.1007/s11046-007-9076-x

    Article  CAS  PubMed  Google Scholar 

  • Ponts N, Pinson-Gadais L, Verdal-Bonnin MN, Barreau C, Richard-Forget F (2006) Accumulation of deoxynivalenol and its 15-acetylated form is significantly modulated by oxidative stress in liquid cultures of Fusarium graminearum. FEMS Microbiol Lett 258:102–107. doi:10.1111/j.1574-6968.2006.00200.x

    Article  CAS  PubMed  Google Scholar 

  • Ponts N, Pinson-Gadais L, Boutigny AL, Barreau C, Richard-Forget F (2011) Cinnamic-derived acids significantly affect Fusarium graminearum growth and in vitro synthesis of type B trichothecenes. Phytopathology 101:929–934. doi:10.1094/Phyto-09-10-0230

    Article  CAS  PubMed  Google Scholar 

  • Proctor RH, Hohn TM, McCormick SP, Desjardins AE (1995) Tri6 encodes an unusual zinc finger protein involved in regulation of trichothecene biosynthesis in Fusarium sporotrichioides. Appl Environ Microbiol 61:1923–1930

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ravagnani A, Gorfinkiel L, Langdon T, Diallinas G, Adjadj E, Demais S, Gorton D, Arst HN Jr, Scazzocchio C (1997) Subtle hydrophobic interactions between the seventh residue of the zinc finger loop and the first base of an HGATAR sequence determine promoter-specific recognition by the Aspergillus nidulans GATA factor AreA. EMBO J 16:3974–3986. doi:10.1093/emboj/16.13.3974

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sakuda S, Yoshinari T, Furukawa T, Jermnak U, Takagi K, Iimura K, Yamamoto T, Suzuki M, Nagasawa H (2016) Search for aflatoxin and trichothecene production inhibitors and analysis of their modes of action. Biosci Biotechnol Biochem 80:43–54. doi:10.1080/09168451.2015.1086261

    CAS  Google Scholar 

  • Shyh-Chang N, Locasale JW, Lyssiotis CA, Zheng Y, Teo RY, Ratanasirintrawoot S, Zhang J, Onder T, Unternaehrer JJ, Zhu H, Asara JM, Daley GQ, Cantley LC (2013) Influence of threonine metabolism on S-adenosylmethionine and histone methylation. Science 339:222–226. doi:10.1126/science.1226603

    Article  PubMed  Google Scholar 

  • Son H, Lee Y-W (2012) Fusarium graminearum mycotoxins and their biosynthetic genes. Mycotoxins 62:29–40. doi:10.2520/myco.62.29

    Article  CAS  Google Scholar 

  • Sugita-Konishi Y (2008) Toxicity and control of trichothecene mycotoxins. Mycotoxins 58:23–28. doi:10.2520/myco.58.23

    Article  CAS  Google Scholar 

  • Takahashi-Ando N, Ochiai N, Tokai T, Ohsato S, Nishiuchi T, Yoshida M, Fujimura M, Kimura M (2008a) A screening system for inhibitors of trichothecene biosynthesis: hydroxylation of trichodiene as a target. Biotechnol Lett 30:1055–1059. doi:10.1007/s10529-008-9649-x

    Article  CAS  PubMed  Google Scholar 

  • Takahashi-Ando N, Tokai T, Yoshida M, Fujimura M, Kimura M (2008b) An easy method to identify 8-keto-15-hydroxytrichothecenes by thin-layer chromatography. Mycotoxins 58:115–117. doi:10.2520/myco.58.115

    Article  CAS  Google Scholar 

  • Todd RB, Fraser JA, Wong KH, Davis MA, Hynes MJ (2005) Nuclear accumulation of the GATA factor AreA in response to complete nitrogen starvation by regulation of nuclear export. Eukaryot Cell 4:1646–1653. doi:10.1128/EC.4.10.1646-1653.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang J, Alexander P, Wu L, Hammer R, Cleaver O, McKnight SL (2009) Dependence of mouse embryonic stem cells on threonine catabolism. Science 325:435–439. doi:10.1126/science.1173288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Whittaker MM, Whittaker JW (2001) Catalytic reaction profile for alcohol oxidation by galactose oxidase. Biochemistry 40:7140–7148

    Article  CAS  PubMed  Google Scholar 

  • Yaguchi A, Yoshinari T, Tsuyuki R, Takahashi H, Nakajima T, Sugita-Konishi Y, Nagasawa H, Sakuda S (2009) Isolation and identification of precocenes and piperitone from essential oils as specific inhibitors of trichothecene production by Fusarium graminearum. J Agric Food Chem 57:846–851. doi:10.1021/jf802813h

    Article  CAS  PubMed  Google Scholar 

  • Yin DT, Urresti S, Lafond M, Johnston EM, Derikvand F, Ciano L, Berrin JG, Henrissat B, Walton PH, Davies GJ, Brumer H (2015) Structure-function characterization reveals new catalytic diversity in the galactose oxidase and glyoxal oxidase family. Nat Commun 6:10197. doi:10.1038/ncomms10197

    Article  CAS  PubMed  Google Scholar 

  • Yoshizawa T (2013) Thirty-five years of research on deoxynivalenol, a trichothecene mycotoxin: with special reference to its discovery and co-occurrence with nivalenol in Japan. Food Saf 1. doi:10.14252/foodsafetyfscj.2013002

Download references

Acknowledgements

This work was supported by Science and Technology Research Promotion Program for Agriculture, Forestry, Fisheries and Food Industry.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Makoto Kimura.

Additional information

Communicated by Erko Stackebrandt.

Kazuyuki Maeda and Yuichi Nakajima contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 496 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maeda, K., Nakajima, Y., Tanahashi, Y. et al. l-Threonine and its analogue added to autoclaved solid medium suppress trichothecene production by Fusarium graminearum . Arch Microbiol 199, 945–952 (2017). https://doi.org/10.1007/s00203-017-1364-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-017-1364-3

Keywords

Navigation