Skip to main content

Advertisement

Log in

ANTISTAPHYBASE: database of antimicrobial peptides (AMPs) and essential oils (EOs) against methicillin-resistant Staphylococcus aureus (MRSA) and Staphylococcus aureus

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

Staphylococcus aureus and methicillin-resistant S. aureus are major pathogens. The antimicrobial peptides and essential oils (EOs) display narrow- or broad-spectrum activity against bacteria including these strains. A centralized resource, such as a database, designed specifically for anti-S. aureus/anti-methicillin-resistant S. aureus antimicrobial peptides and EOs is therefore needed to facilitate the comprehensive investigation of their structure/activity associations and combinations. The database ANTISTAPHYBASE is created to facilitate access to important information on antimicrobial peptides and essential peptides against methicillin-resistant S. aureus and S. aureus. At the moment, the database contains 596 sequences of antimicrobial peptides produced by diverse organisms and 287 essential oil records. It permits a quick and easy search of peptides based on their activity as well as their general, physicochemical properties and literature data. These data are very useful to perform further bioinformatic or chemometric analysis and would certainly be useful for the development of new drugs for medical use. The ANTISTAPHYBASE database is freely available at: https://www.antistaphybase.com/.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Bancroft EA (2007) Antimicrobial resistance: it’s not just for hospitals. JAMA 298:1803–1804

    Article  PubMed  Google Scholar 

  • Brogden K (2005) Antimicrobial peptides: pores formers or metabolic inhibitors in bacteria? Nature 3:238–250

    CAS  Google Scholar 

  • Cesar J, Romero L, González-Ríos H, Borges A, Simões M (2015) Antibacterial effects and mode of action of selected essential oils components against Escherichia coli and Staphylococcus aureus. Evid Based Complement Alternat Med. doi:10.1155/2015/795435

    Google Scholar 

  • Chambers HF (2001) The changing epidemiology of Staphylococcus aureus? Emerg Infect Dis 7:178–182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fimland G, Eijsink VG, Nissen-Meyer J (2002) Mutational analysis of the role of tryptophan residues in an antimicrobial peptide. Biochemistry 41:9508–9515

    Article  CAS  PubMed  Google Scholar 

  • Garozzo A, Timpanaro R, Stivala A et al (2011) Activity of Melaleuca alternifolia (tea tree) oil on influenza virus A/PR/8: study on the mechanism of action. Antiviral Res 89(1):83–88

    Article  CAS  PubMed  Google Scholar 

  • Gueguen Y, Garnier J, Robert L et al (2006) PenBase, the shrimp antimicrobial peptide penaeidin database: sequence based classification and recommended nomenclature. Dev Comp Immunol 30:283–288

    Article  CAS  PubMed  Google Scholar 

  • Hammami R, Zouhir A, Ben Hamida J et al (2007) BACTIBASE: a new web-accessible database for bacteriocin characterization. BMC Microbiol 7:89

    Article  PubMed  PubMed Central  Google Scholar 

  • Hammami R, Abdelmajid Z, Karim N, Ben Hamida J, Fliss I (2008) SciDBMaker: new software for computer-aided design of specialized biological databases. BMC Bioinform 9:121

    Article  Google Scholar 

  • Hammami R, Ben Hamida J, Vergoten G et al (2009) PhytAMP: a database dedicated to antimicrobial plant peptides. Nucleic Acids Res 37(Database issue):D963–D968

    Article  CAS  PubMed  Google Scholar 

  • Hancock R, Lehrer R (1998) Cationic peptides: a new source of antibiotics. Trends Biotechnol 16(2):82–88

    Article  CAS  PubMed  Google Scholar 

  • Hyldgaard M, Mygind T, Vad BS, Stenvang M, Otzen DE, Meyer RL (2014) The antimicrobial mechanism of action of epsilon-poly-l-lysine. Appl Environ Microbiol 80:7758–7770

    Article  PubMed  PubMed Central  Google Scholar 

  • Janssen AM, Scheffer JJ, Svendsen AB (1987) Antimicrobial activity of essential oils: a 1976–1986 literature review. Aspects of the test methods. Planta Med 53(5):395–398

    Article  CAS  PubMed  Google Scholar 

  • Johnson AP, Pearson A, Duckworth G (2005) Surveillance and epidemiology of MRSA bacteraemia in the UK. J Antimicrob Chemother 56:455–462

    Article  CAS  PubMed  Google Scholar 

  • Kennedy AD, Otto M, Braughton KR et al (2008) Epidemic community-associated methicillin-resistant Staphylococcus aureus: recent clonal expansion and diversification. Proc Natl Acad Sci USA 105:1327–1332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klein E, Smith DL, Laxminarayan R (2007) Hospitalizations and deaths caused by methicillin-resistant Staphylococcus aureus, United States, 1999–2005. Emerg Infect Dis 13:1840–1846

    Article  PubMed  PubMed Central  Google Scholar 

  • Klevens RM, Morrison MA, Nadle J, Petit S, Gershman K, Ray S, Harisson LH, Lynfield R, Dumyati G, Townes JM et al (2007) Invasive methicillin resistant Staphylococcus aureus infections in the United States. JAMA 298:1763–1771

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Chen Z (2008) RAPD: a database of recombinantly-produced antimicrobial peptides. FEMS Microbiol Lett 289:126–129

    Article  CAS  PubMed  Google Scholar 

  • Lowy FD (1998) Staphylococcus aureus infections. N Engl J Med 339:520–532

    Article  CAS  PubMed  Google Scholar 

  • Maria JG, Lucas Rosario L, Hikmate A, Eva V, Ben Nabil O, Mercedes M, Magdalena MC, Antonio GJ (2007) Treatment of vegetable sauces with enterocin AS-48 alone or in combination with phenolic compounds to inhibit proliferation of Staphylococcus aureus. Food Prot 2:405–411

    Google Scholar 

  • Monzote L, García M, Montalvo AM et al (2007) In vitro activity of an essential oil against Leishmania donovani. Phytother Res 21(11):1055–1058

    Article  CAS  PubMed  Google Scholar 

  • Moreillon P (2005) Staphylococcus aureus. In: Mendell GE et al (eds) Principles and practice of infectious diseases, 6th edn. Elsevier, Amsterdam, pp 2321–2351

    Google Scholar 

  • Piotto SP, Sessa L, Concilio S et al (2012) YADAMP: yet another database of antimicrobial peptides. Int J Antimicrob Agents 39:346–351

    Article  CAS  PubMed  Google Scholar 

  • Ríos JL, Recio MC (2005) Medicinal plants and antimicrobial activity. J Ethnopharmacol 100(1–2):80–84

    Article  PubMed  Google Scholar 

  • Ryu S, Song PI, Seo CH, Cheong H et al (2014) Colonization and infection of the skin by S. aureus: immune system evasion and the response to cationic antimicrobial peptides. Int J Mol Sci 15:8753–8772

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seebah S, Suresh A, Zhuo S et al (2007) Defensins knowledgebase: a manually curated database and information source focused on the defensins family of antimicrobial peptides. Nucleic Acids Res 1(Database issue):D265–D268 (Epub 2006 Nov 7)

    Article  Google Scholar 

  • Thomas S, Karnik S, Barai RS et al (2010) CAMP: a useful resource for research on antimicrobial peptides. Nucleic Acids Res 38(Database issue):D774–D780

    Article  CAS  PubMed  Google Scholar 

  • Tyagi AK, Malik A (2010) Liquid and vapourphase antifungal activities of selected essential oils against Candida albicans: microscopic observations and chemical characterization of Cymbopogon citratus. BMC Complement Altern Med 10:65

    Article  PubMed  PubMed Central  Google Scholar 

  • Wade D, Englund J (2002) Synthetic antibiotic peptides database. Protein Pept Lett 9:53–57

    Article  CAS  PubMed  Google Scholar 

  • Wang G (2010) Antimicrobial peptides: discovery, design and novel therapeutic strategies. CABI, Wallingford

    Book  Google Scholar 

  • Wang G, Li X, Wang Z (2008) APD2: the updated antimicrobial peptide database and its application in peptide design. Nucleic Acids Res 37(Database issue):D933–D937

    PubMed  PubMed Central  Google Scholar 

  • Whitmore L, Wallace BA (2004) The Peptaibol Database: a database for sequences and structures of naturally occurring peptaibols. Nucleic Acids Res 32(1 Database issue):D593–D594

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu H, Lu H, Huang J et al (2012) EnzyBase: a novel database for enzybiotic studies. BMC Microbiol 12:54

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yap PSX, Yiap BC, Ping HC, Lim SHE (2014) Essential oils, a new horizon in combating bacterial antibiotic resistance. Open Microbiol J 8:6–14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zasloff M (2002) Antimicrobial peptides of multicellullar organisms. Nature 415:359–365

    Article  Google Scholar 

  • Zhao X, Wu H, Lu H, Li G, Huang Q (2013) LAMP: a database linking antimicrobial peptides. PLoS One 8(6):e66557

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zouhir A, Jridi T, Nefzi A, Ben Hamida J, Sebei K (2016) Inhibition of methicillin-resistant Staphylococcus aureus (MRSA) by antimicrobial peptides (AMPs) and plant essential oils. Pharm Biol 5:1–16

    Google Scholar 

Download references

Acknowledgments

Authors thank Dr. Sadok Mokthar for their critical reading of the manuscript and Mr Samir Borji for his contributions to the database-related work described here. We thank Mme Aziza Cherif  and Mr Houcine Zouheir for their support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdelmajid Zouhir.

Ethics declarations

Conflict of interest

The authors report that they have no conflict of interest.

Additional information

Communicated by Erko Stackebrandt.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zouhir, A., Taieb, M., Lamine, M.A. et al. ANTISTAPHYBASE: database of antimicrobial peptides (AMPs) and essential oils (EOs) against methicillin-resistant Staphylococcus aureus (MRSA) and Staphylococcus aureus . Arch Microbiol 199, 215–222 (2017). https://doi.org/10.1007/s00203-016-1293-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-016-1293-6

Keywords

Navigation