Skip to main content
Log in

Indole production provides limited benefit to Escherichia coli during co-culture with Enterococcus faecalis

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

Escherichia coli lives in the gastrointestinal tract and elsewhere, where it coexists within a mixed population. Indole production enables E. coli to grow with other gram-negative bacteria as indole inhibits N-acyl-homoserine lactone (AHL) quorum regulation. We investigated whether E. coli indole production enhanced competition with gram-positive Enterococcus faecalis, wherein quorum signaling is mediated by small peptides. During planktonic co-culture with E. faecalis, the fitness and population density of E. coli tnaA mutants (unable to produce indole) equaled or surpassed that of E. coli wt. During biofilm growth, the fitness of both populations of E. coli stabilized around 100 %, whereas the fitness of E. faecalis declined over time to 85–90 %, suggesting that biofilm and planktonic populations have different competition strategies. Media supplementation with indole removed the competitive advantage of E. coli tnaA in planktonic populations but enhanced it in biofilm populations. E. coli wt and tnaA showed similar growth in Luria–Bertani (LB) broth. However, E. coli growth was inhibited in the presence of filter-sterilized spent LB from E. faecalis, with inhibition being enhanced by indole. Similarly, there was also an inhibition of E. faecalis growth by proteinaceous components (likely bacteriocins) from spent culture media from both E. coli strains. We conclude that E. coli indole production is not a universal competition strategy, but rather works against gram-negative, AHL-producing bacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Baba T, Ara T, Hasegawa M, Takai Y, Okumura Y, Baba M, Datsenko KA, Tomita M, Wanner BL, Mori H (2006) Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection. Mol Syst Biol 2:2006.0008

    Article  PubMed  PubMed Central  Google Scholar 

  • Brown SA, Whiteley M (2007) A novel exclusion mechanism for carbon resource partitioning in Aggregatibacter actinomycetemcomitans. J Bacteriol 189:6407–6414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cascales E, Buchanan SK, Duche D, Kleanthous C, Lloubes R, Postle K, Riley M, Slatin S, Cavard D (2007) Colicin biology. Microbiol Mol Biol Rev 71:158–229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cavera VL, Arthur TD, Kashtanov D, Chikindas ML (2015) Bacteriocins and their position in the next wave of conventional antibiotics. Int J Antimicrob Agents 46:494–501

    Article  CAS  PubMed  Google Scholar 

  • Chandler JR, Heilmann S, Mittler JE, Greenberg EP (2012) Acyl-homoserine lactone-dependent eavesdropping promotes competition in a laboratory co-culture model. ISME J 6:2219–2228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chu W, Zere TR, Weber MM, Wood TK, Whiteley M, Hidalgo-Romano B, Valenzuela E Jr, McLean RJC (2012) Indole production promotes Escherichia coli mixed culture growth with Pseudomonas aeruginosa by inhibiting quorum signaling. Appl Environ Microbiol 78:411–419

    Article  CAS  Google Scholar 

  • Conway T, Cohen PS (2015) Commensal and pathogenic Escherichia coli metabolism in the gut. Microbiol Spectr 3:MBP-0006-2014

    Google Scholar 

  • Cook LC, Federle MJ (2014) Peptide pheromone signaling in Streptococcus and Enterococcus. FEMS Microbiol Rev 38:473–492

    Article  CAS  PubMed  Google Scholar 

  • Culotti A, Packman AI (2014) Pseudomonas aeruginosa promotes Escherichia coli biofilm formation in nutrient-limited medium. PLoS One 9:e107186

    Article  PubMed  PubMed Central  Google Scholar 

  • Goh HF, Philip K (2015) Purification and characterization of bacteriocin produced by Weissella confusa A3 of dairy origin. PLoS One 10:e0140434

    Article  PubMed  PubMed Central  Google Scholar 

  • Golberg K, Pavlov V, Marks RS, Kushmaro A (2013) Coral-associated bacteria, quorum sensing disrupters, and the regulation of biofouling. Biofouling 29:669–682

    Article  CAS  PubMed  Google Scholar 

  • Hidalgo-Romano B, Gollihar J, Brown SA, Whiteley M, Valenzuela E Jr, Kaplan HB, Wood TK, McLean RJC (2014) Indole inhibition of AHL-mediated quorum signaling is widespread in gram-negative bacteria. Microbiology 160:2464–2473

    Article  CAS  PubMed  Google Scholar 

  • Kawamura-Sato K, Shibayama K, Horii T, Iimuma Y, Arakawa Y, Ohta M (1999) Role of multiple efflux pumps in Escherichia coli in indole expulsion. FEMS Microbiol Lett 179:345–352

    Article  CAS  PubMed  Google Scholar 

  • Khare A, Tavazoie S (2015) Multifactorial competition and resistance in a two-species bacterial system. PLoS Genet 11:e1005715

    Article  PubMed  PubMed Central  Google Scholar 

  • Kirkup BC, Riley MA (2004) Antibiotic-mediated antagonism leads to a bacterial game of rock-paper-scissors in vivo. Nature 428:412–414

    Article  CAS  PubMed  Google Scholar 

  • Kommineni S, Bretl DJ, Lam V, Chakraborty R, Hayward M, Simpson P, Cao Y, Bousounis P, Kristich CJ, Salzman NH (2015) Bacteriocin production augments niche competition by enterococci in the mammalian gastrointestinal tract. Nature 526:719–722

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Korgaonkar A, Trivedi U, Rumbaugh K, Whiteley M (2012) Community surveillance enhances Pseudomonas aeruginosa virulence during polymicrobial infection. Proc Natl Acad Sci USA 110:1059–1064

    Article  PubMed  PubMed Central  Google Scholar 

  • Lee JH, Lee J (2010) Indole as an intercellular signal in microbial communities. FEMS Microbiol Rev 34:426–444

    Article  CAS  PubMed  Google Scholar 

  • Lin YC, Lin WP, Huang JY, Lee SY (2012) Polymicrobial peritonitis following colonoscopic polypectomy in a peritoneal dialysis patient. Intern Med 51:1841–1843

    Article  PubMed  Google Scholar 

  • Macleod SM, Stickler DJ (2007) Species interactions in mixed-community crystalline biofilms on urinary catheters. J Med Microbiol 56:1549–1557

    Article  PubMed  Google Scholar 

  • McLellan SL, Huse SM, Mueller-Spitz SR, Andreishcheva EN, Sogin ML (2010) Diversity and population structure of sewage-derived microorganisms in wastewater treatment plant influent. Environ Microbiol 12:378–392

    Article  CAS  PubMed  Google Scholar 

  • Palmer KL, Mashburn LM, Singh PK, Whiteley M (2005) Cystic fibrosis sputum supports growth and cues key aspects of Pseudomonas aeruginosa physiology. J Bacteriol 187:5267–5277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Palmer KL, Godfrey P, Griggs A, Kos VN, Zucker J, Desjardins C, Cerqueira G, Gevers D, Walker S, Wortman J, Feldgarden M, Haas B, Birren B, Gilmore MS (2012) Comparative genomics of enterococci: variation in Enterococcus faecalis, clade structure in E. faecium, and defining characteristics of E. gallinarum and E. casseliflavus. mBio 3:e00318-11

    PubMed  PubMed Central  Google Scholar 

  • Smibert RM, Krieg NR (1994) Phenotypic characterization. In: Gerhardt P, Murray RGE, Wood WA, Krieg NR (eds) Methods for general and molecular bacteriology. American Society for Microbiology, Washington DC, pp 607–654

    Google Scholar 

  • Tagg JR, McGiven AR (1971) Assay system for bacteriocins. Appl Microbiol 21:943

    CAS  PubMed  PubMed Central  Google Scholar 

  • The Human Microbiome Project Consortium (2012) A framework for human microbiome research. Nature 486:215–221

    Article  Google Scholar 

  • Ushijima T, Seto A (1991) Selected faecal bacteria and nutrients essential for antagonism of Salmonella typhimurium in anaerobic continuous flow cultures. J Med Microbiol 35:111–117

    Article  CAS  PubMed  Google Scholar 

  • Vijayakumar PP, Muriana PM (2015) A microplate growth inhibition assay for screening bacteriocins against Listeria monocytogenes to differentiate their mode-of-action. Biomolecules 5:1178–1194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wanjugi P, Harwood VJ (2013) The influence of predation and competition on the survival of commensal and pathogenic fecal bacteria in aquatic habitats. Environ Microbiol 15:517–526

    Article  PubMed  Google Scholar 

  • Weber MM, French CL, Barnes MB, Siegele DA, McLean RJC (2010) A previously uncharacterized gene, yjfO (bsmA) influences Escherichia coli biofilm formation and stress response. Microbiology 156:139–147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was funded by a grant from the Research Enhancement Program at Texas State University to RJCM. We thank the reviewers for helpful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert J. C. McLean.

Additional information

Communicated by Djamel Drider.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pringle, S.L., Palmer, K.L. & McLean, R.J.C. Indole production provides limited benefit to Escherichia coli during co-culture with Enterococcus faecalis . Arch Microbiol 199, 145–153 (2017). https://doi.org/10.1007/s00203-016-1289-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-016-1289-2

Keywords

Navigation